Rock and Paleomagnetism

SIO 247

Spring Quarter, 2016
Lecture 1

- What are rock and paleomagnetism?
- Applications
- How to take this class
- Python programming bootcamp
What is Rock magnetism?

- The study of the magnetic properties of rocks and minerals
What is Paleomagnetism?

- Application of magnetic measurements of rocks, minerals to solve geological problems.
- Applied to archaeological artifacts, is called archaeomagnetism.
Applications

- understanding geomagnetic field behavior in ancient times
- dating
- tectonic reconstructions
- magnetic fabrics of rocks (anisotropy)
- magnetic mineralogy, magnetic grain sizes, domain states
Why study the geomagnetic field?

- Acts as shield for solar and cosmic radiation
- Controls production of cosmogenic nuclides (14C, 10Be,...)
- May play a role in nucleating clouds...
- Navigation
How to take this class

- Attend each lecture

- Do the required reading in the textbook: Essentials of Paleomagnetism. This book is available free online, or you can order one from me for $30.

- Work the assignments after every lecture - they are due in one week. These are worth 40% of the grade.

- There is one required field trip on April 16, 2016.

- And a required lab project (this is worth 30% of the grade). For this I will need a copy of your Safety training certificate. Undergrads sign up as a volunteer with Monica Bailey (4th floor Ritter Hall) and take the online class.

- There will be a final project also worth 30% of the grade.
What you will learn in this class

- Basics of Rock and Paleomagnetism
- How to program in Python
Why python?

- Flexible, freely available, cross platform
- Easy to learn and well documented
- Lots of numerical, statistical and visualization packages
- Well supported and has a complete set of paleomagnetic software (PmagPy)
Getting started

• Reference materials
• Setting up your computer
 • installing essential software (Python, PmagPy)
 • survival Unix/Dos
• writing your first python notebook.
Reference Materials

Tauxe et al.,
Essentials of Paleomagnetism
http://earthref.org/MAGIC/books/Tauxe/Essentials/

PmagPy Cookbook
http://earthref.org/PmagPy/

Database
rock and paleomagnetic data
earthref.org/MagIC
Contents

Take off with PmagPy

PmagPy Cookbook

March 11, 2016
Dear Reader,

This documentation is updated from that in the book entitled Essentials of Paleomagnetism by Tauxe et al. (2016). This cookbook was designed as a companion website to the book Essentials of Paleomagnetism, 3rd Web Edition. Chapter references to this companion book are, for example, “Essentials of Paleomagnetism, 3rd Web Edition”.

There are many chefs who contributed to this work, in particular, the MagIC Database Team (Cathy Constable, Anthony Koppers, Rupert Minnett, Nick Jarboe, Ron Shaar, and Lori Jonestrask). Nick Swanson-Hysell (UC Berkeley) contributed the demag_gui and Jupyter notebook documentation. The PmagPy project is supported by grants from the National Science Foundation.

Lisa Tauxe
Scripps Institution of Oceanography
La Jolla, CA 92093
March 11, 2016
http://magician.ucsd.edu/~ltauxe/

Chapter 1
Setting up your computer

- Go to: http://earthref.org/PmagPy/
- Install the Full PmagPy instructions exactly
 - get the recommended Python version
 - install PmagPy following the instructions exactly.
Survival Unix (Dos)

- Consult Chapter 4 of the PmagPy cookbook to learn the following:
 - Find your terminal window (command line)
 - Understand your file system
 - Learn a few essential commands
Find your command line (Windows)
Find your command line (Mac OS)
Type commands on the command line followed by `return` key.
File system basics

GUI view

root

Mac OS X (Unix)

/}

/Users

/Users/limatango

//Users/limatango/Desktop

you really don't want to see this!
The Unix View of things

root directory

Applications

Utilities

terminal.app

Users

steve

jeff

lisa

Datafiles_2.0

PmagPy

apwp.py

bootams.py

fishrot.py

dir_cart

eqarea

dir_cart_example.dat
Text editors

- Canopy has its own
- TextWrangler (free)
- Notepad
- My favorite is `vi`
- My son insists on emacs
Essential commands

- Make a new directory: use `mkdir`

- List contents of directory: use `ls` (or `dir` in Dos)

- List the contents of a file: use `cat` (or `type` in Dos).

- Concept of redirect (`<` or `>`) and pipe (`|`)

- Moving around in the file system: use the command `cd` (change directory). Short cuts: home (just `cd`), up one (`cd ..`)
• Firing up a Jupyter notebook
• First look at Python
• First look at the numerical package NumPy
Using jupyter notebooks

• make a directory on your computer called “Homework” or something. Use a combination of cd and mkdir to do this.

• cd into your new Homework directory

• type: jupyter notebook
Click on the ‘new’ button and create a Python 2 notebook
Rename and save your notebook. Use a name of the form: YOURLASTNAME_HW_1 (you don’t need the file type - it will be ipynb)
There are two basic ‘cells’ in the notebook:

Code: for writing python code

and

Markdown: for typesetting notes.

Change the first cell to ‘Markdown’ and type some notes. To typeset them, click on the run key or run the cell under ‘Cell’.
As soon as you `run` a cell, a new code cell is inserted below.

Now we can try some simple programming.
Type in the code block above in your notebook. When you click on the 'run' button, the text below it appears. If there is a typo, you will hear about it!

```
In [3]:
a=2
print 'a= ',a
b=3
print 'b= ',b
c=a+b
print 'c= ',c
c+=1
print 'now c= ',c

File "<ipython-input-3-8e8f21c06e19>", line 2
    print 'a= 'a
    ^
SyntaxError: invalid syntax
```
• Variable names can be defined on the fly and are composed of case sensitive alphanumerics, including `-' and `_`.

• `+` adds, `-` subtracts, `*` multiplies, `/` divides, `\%` gives the remainder, `**` raises to the power

• These two are fun: `+=` and `-=`. They add to and subtract from respectively.

• Parentheses determine order of operation (as in any reasonable programming language).

• For math functions, we will use the NumPy module (a module is a collection of functions).
A first look at NumPy

In [1]: import numpy as np
 np.pi

Out[1]: 3.141592653589793

In [2]: np.sqrt(4.0)

Out[2]: 2.0

In [4]: a,b,c=2,-12,16 # note all on one line and that # means comment follows.
 (-b+np.sqrt(b**2-4.*a*c))/(2.*a) # quadratic equation

Out[4]: 4.0

In [5]: y=np.sin(np.pi/6.)
 y

Out[5]: 0.4999999999999994
Here is a (partial) list of some useful NumPy functions:

- `absolute(x)` absolute value
- `arccos(x)` arccosine
- `arcsin(x)` arcsine
- `arctan(x)` arctangent
- `arctan2(y,x)` arctangent of y/x in correct quadrant (**very useful!**)
- `cos(x)` cosine
- `cosh(x)` hyperbolic cosine
- `exp(x)` exponential
- `log(x)` natural logarithm
- `log10(x)` base 10 log
- `sin(x)` sine
- `sinh(x)` hyperbolic sine
- `sqrt(x)` square root
- `tan(x)` tangent
- `tanh(x)` hyperbolic tangent

Note that in the trigonometric functions, the argument is in RADIANS! You can convert from degrees to radians by multiplying by: `numpy.pi/180`. Also notice how these functions have parentheses, as opposed to `numpy.pi` which has none. The difference is that these take arguments, while `numpy.pi` just returns the value of π.
Assignment

• Go to: http://earthref.org/PmagPy/ and install the Full PmagPy instructions exactly

• Read Chapters 1, 4 and 8 of the cookbook - install software and find your command line (terminal window).

• Download the file Tauxe_HW_1.ipynb from the class website (remove any .txt termination and make sure it is .ipynb)

• Open it in with jupyter notebook and play with it.

• Make sure you can create and save your OWN Jupyter notebook with both ‘markdown’ and ‘code’ cells.

• Turn in this and all other homework assignments as a zip file with the .ipynb file and all other files required to run it. email the zip file with the name: YOURLASTNAME_HW_X.zip

• The homework is due by class time on Friday! Start now so we can debug any problems now.