Lecture 11

- Environmental toolkit
- Applications

Toolkit

- Images (a picture is worth 1000 words)
- Oritical Temperatures (Curie, Verwey, etc.)
- Magnetic susceptibility
- Remanent magnetizations
- Ratios

Critical temperatures (Table 8.1)

- Curie (Neel) temperature (Tc)
- Blocking temperature (Tb) and Median destructive temperature (MDT) [and Hc and Median destructive field while we are at it.]
- Hopkinson effect
- Various crystallographic transition temperatures

Curie balance in the SIO lab

Know your Curie Temperatures!

Listed in Table 6.1

Verwey Temp (from Chapter 4)

Tb and MDT

coercivity spectrum and MDF for sister specimen

Guess which mineral this is....

Magnetic susceptibility

- Measurement
- Directional dependence (anisotropy see Chapter 13)
- Temperature dependence
- Frequency Dependence

Magnetic susceptibility

Temperature dependence

- Diamagnetic (none)
- Paramagetic (1/T)
- ferromagnetic (depends on domain state (SP/ SD/MD)
- Biggest effect is change from SD=>SP (jumps by factor of 27) known as Hopkinson effect

Frequency dependence

- Because the definition of SP depends on time scale, can go from SD to SP by lengthening time span of observation.
- Measure susceptibility fast, could behave as stable (low susceptibility)
- Measure same specimen slow, could behave as SP (high susceptibility)

outcrop measurement of susceptibility

Magnetic remanences

- Isothermal remanence (IRM)
- Anhysteretic remanence (ARM)
- Gyromagnetic remancence (GRM)

The joys of IRM

- Acquisition
- Destruction
 - DC fields
 - AC fields
 - thermal demagnetization

Review of two ways to give IRMs

Neat application

crossover: non-interacting SD versus interacting (MD)

3D IRM technique

ARM - what's it good for

- Strong function of grain size
- Strong function of concentration (particle interaction)

Banerjee et al., 1981

Ratios (and differences)

- Mr/Ms versus Hcr/Hc (Day plot)
- ARM versus magnetic susceptibility (Banerjee plot)
- see Table 8.2 in the book for more....

Lots more applications in Chapter 8

See also review by Liu et al., Environmental magnetism: Principles and Applications, Reviews of Geophysics, 50, doi: 10.1029/2012RG000393, 2012.

Assignment

Problems 8.1 and 8.3 in Chapter 8 of Essentials of Paleomagnetism