Lecture 12: Beyond Fisher distributions

- How to tell if data are Fisher distributed
- The magic of quantile-quantile plots
- Application to Fisher distributions
- Alternative statistical approaches for non-Fisherian data
- Applications to paleomagnetism
- Test for common direction
- Fold test
The magic of quantile-quantile plots
(Appendix B.1.5)

- In Q-Q plots, data are graphed against the value expected from a particular distribution.
- If the data distribution is compatible with the chosen distribution, the data plot along a line.
- Can quantify the degree of misfit and reject assumed distribution at 95% confidence.
An example with uniform distribution

Generate a list of numbers from a uniform distribution (e.g., with command `random.uniform(100)`)

![Histogram of uniformly distributed numbers with N = 100](image)
Sort the data into an increasing list and locate each data point on the assumed distribution (in this case: uniform - green line)
Break the expected distribution (green line) into N regions of equal area

This gives you a second list of z’s - one for every original data point
Plot the each data point \((\zeta_i)\) against the corresponding values from the assumed distribution \((\varepsilon_i)\)

If distribution fits - plot will be linear

Calculate \(V_n\)

Compare \(V_n\) with maximum number allowed for 95% confidence:

\[M_u = V_n \left(\sqrt{N} - 0.567 + \frac{1.623}{\sqrt{N}} \right)\]

If \(M_u > 1.207\), not uniform
Applied to paleomagnetic data

• First - transform the data set to the mean direction (see Chapter 11 for details)
Remember Fisher declinations are uniform and inclinations are exponential.
If either M_u or M_e exceed critical values, not a Fisher distribution

can do this with `fishqq.py` in PmagPy distribution but only good for large data sets ($N \sim 100$)
What to do if your data aren’t Fisherian

- Parametric confidence ellipses (see Chapter 12)
- Kent distribution
- Bingham distributions
- These don’t have nifty tests for common mean, etc.
- Non-parametric (bootstrap)
Non-fisherian data set

Declinations

N: 125
Mu: 1.306
Non-fisherian

Inclinations

N: 125
Me: 1.666
Non-fisherian
Fisher circle of confidence

Kent 95% confidence ellipse

\[F = c(\kappa, \beta)^{-1} \exp(\kappa \cos \alpha + \beta \sin^2 \alpha \cos 2\phi). \]

Kent like Fisher, but with “ovalness” parameter, \(\beta \)
• Kent is nice (allows elliptical data distributions)

• But one major cause for non-Fisherian data is reversals!

• Bingham distribution (based on eigenvector of orientation tensor and not vector mean) allows for bi-polar data - see Chapter 12

• BUT. does not allow a test for whether normal and reverse data are antipodal.

• AND - none of these has the handy tests available for Fisherian data (Vw, etc.)
Non-parametric approach (the bootstrap)

• The bootstrap is like the Monte Carlo test we encountered earlier.

• Calculate parameter of interest (e.g., the mean direction) for random samples of the original data many many times (>1000)

• Each resampled data set (called a “pseudo-sample”) has the same N
original

"pseudo-sample"

cyan data points used more than once some not used at all

repeat MANY times

Maps out probability distribution of means

calculate vector mean
Now you have some options

- If you want ellipses, you can assume a distribution for the MEANS (e.g., Kent)
- You can test your hypothesis with the components of the bootstrapped mean vectors directly (preferred)
Test for common direction

• Comparison of paleomagnetic direction with known direction (IGRF value)

• Comparison of one paleomagnetic direction with another
 • normal and reverse data from the same study (the “reversals test”)
 • data from different studies or locations
 • direction predicted from a reconstructed location or paleomagnetic pole
Two sets of directions

Reversals test compare normal mode with antipodes of reverse mode

Passes!
Foldtest

- Relies on testing whether directions are better grouped before or after correcting for tilt
- Many versions in the literature - they all give pretty much the same answer....
- The bootstrap approach does not require separation of data into normal and reverse modes or arbitrary groupings of data
- Simply calculate eigenparameters of orientation matrix as function of untilting
- Perform bootstrap to get bounds on tightest grouping
Reminder
convert all directions to unit vectors, then calculate eigenparameters. Blue line is “principal” (V_1) corresponding to most variance (τ_1)
plot CDF of all maxima and 95% bounds
Let’s talk about possible project topics