
Lecture 12: 
Beyond Fisher distributions

How to tell if data are Fisher distributed


The magic of quantile-quantile plots


application to Fisher distributions


Alternative statistical approaches for non-
Fisherian data


Applications to paleomagnetism


test for common direction


fold test
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The magic of quantile-quantile plots 
(Appendix B.1.5)

• In Q-Q plots, data are graphed against the 
value expected from a particular distribution

• If the data distribution is compatible with 
the chosen distribution, the data plot along a 
line

• Can quantify the degree of misfit and reject 
assumed distribution at 95% confidence
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Generate a list of numbers from a uniform distribution 
(e.g., with command random.uniform(100))

An example with uniform distribution
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Sort the data into an increasing list and locate each data 
point on the assumed distribution (in this case: uniform - 

green line)
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Break the expected distribution (green line) 
into N regions of equal area
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This gives you a second list of z’s - 
one for every original data point
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Plot the each data point (    ) against the corresponding 
values from the assumed distribution (   )

ζ i

If distribution fits - 
plot will be linear

Calculate Vn

Compare Vn with 
maximum number 
allowed for 95% 

confidence:  
D-

D+



Applied to paleomagnetic data

• First - transform the data set to the mean 
direction (see Chapter 11 for details)
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Remember Fisher declinations are uniform and 
inclinations are exponential 
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can do this with fishqq.py in PmagPy distribution
but only good for large data sets (N~100)

If either Mu or Me exceed critical values, not a Fisher 
distribution



What to do if your data 
aren’t Fisherian

Parametric confidence ellipses (see Chapter 12)


Kent distribution


Bingham distributions


These don’t have nifty tests for common mean, 
etc.


Non-parametric (bootstrap)
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Non-fisherian
data set
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Fisher circle of 
confidence 

Kent 95% 
confidence ellipse

Kent like Fisher, but with “ovalness” parameter, 



• Kent is nice (allows elliptical data 
distributions)

• But one major cause for non-Fisherian data 
is reversals!

• Bingham distribution (based on eigenvector 
of orientation tensor and not vector mean) 
allows for bi-polar data - see Chapter 12

• BUT.  does not allow a test for whether 
normal and reverse data are antipodal.

• AND - none of these has the handy tests 
available for Fisherian data (Vw, etc.)
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Non-parametric approach (the bootstrap)

• The bootstrap is like the Monte Carlo test 
we encountered earlier.

• Calculate parameter of interest (e.g., the 
mean direction) for random samples of the 
original data many many times (>1000)

• Each resampled data set (called a “pseudo-
sample”) has the same N
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original

“pseudo-
sample”
cyan data points 
used more than once
some not used at all

calculate 
vector mean

repeat MANY times

Maps out 
probability 

distribution of 
means



• If you want ellipses, you can assume a 
distribution for the MEANS (e.g., Kent)

• You can test your hypothesis with the 
components of the bootstrapped mean 
vectors directly (preferred)
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Now you have some options



Test for common direction

• Comparison of paleomagnetic direction with 
known direction (IGRF value)

• Comparison of one paleomagnetic direction 
with another 

• normal and reverse data from the same 
study (the “reversals test”)

• data from different studies or locations

• direction predicted from a reconstructed 
location or paleomagnetic pole
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IGRF at site

Fails
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Reversals test
compare normal 

mode with antipodes 
of reverse mode

Two sets of directions

Passes!



Foldtest
• Relies on testing whether directions are 

better grouped before or after correcting 
for tilt

• Many versions in the literature - they all give 
pretty much the same answer....

• The bootstrap approach does not require 
separation of data into normal and reverse 
modes or arbitrary groupings of data

• Simply calculate eigenparameters of 
orientation matrix as function of untilting

• Perform bootstrap to get bounds on tightest 
grouping
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Stratigraphic
Example
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North

East

Down

convert all directions to 
unit vectors, then 

calculate 
eigenparameters.  Blue 
line is “principal” (     )  
corresponding to most 

variance   (     )

Reminder
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Geographic

||||||||||

Stratigraphic
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Let’s talk about possible 
project topics
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