
Lecture 13: 
Tensors in paleomagnetism
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What are tensors anyway?


anisotropy of magnetic susceptibility (AMS)


how to find it


what to do with it


anisotropy of magnetic remanence



What is a tensor?
“An array of numbers (or functions) that 
transform according to certain rules under a 
change of coordinates.”


“Tensors are geometric entities [that] extend 
the notion of scalars, vectors and matrices.”
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Examples
We used a tensor of direction cosines to 
transform coordinate systems:


The stress and strain tensor in structural 
geology


The optical indicatrix in mineralogy


AND in paleomagnetism, the relationship 
between the induced field and the applied 
field (sometimes not parallel!)

3

�

⇤
x�

1

x�
2

x�
3

⇥

⌅ =

�

⇤
a11 a12 a13

a21 a22 a23

a31 a32 a33

⇥

⌅

�

⇤
x1

x2

x3

⇥

⌅



Anisotropy of Magnetic 
Susceptibility
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H

M

M1 = �11H1 + �12H2 + �13H3

M2 = �21H1 + �22H2 + �23H3

M3 = �31H1 + �32H2 + �33H3

In Chapter 1, we learned that MI = �H

where � was just a number (scalar) and so M 
was parallel to and proportional to H

But what if the magnetic minerals in the rock are not 
isotropic?

Mi = �ijHjor:
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For convenience (later on), we can remap this to:

Mi = �ijHj

s1 = �11

s2 = �22

s3 = �33

s4 = �12 = �21

s5 = �23 = �32

s6 = �13 = �31



Applications of 

Anisotropy of magnetic susceptibility

Related to distribution of magnetic minerals 
(easy axes) in rocks


Can use it to understand rock fabrics


Sedimentary processes


Igneous processes


Metamorphic processes
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need to measure in at least 6 positions to 
determine AMS tensor
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Measured values are Ki

K1 = s1

K2 = s2

K3 = s3

BUT

K4 =
1
2
(s1 + s2) + s4

K5 =
1
2
(s2 + s3) + s5

K6 =
1
2
(s1 + s3) + s6
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K1 = s1

K2 = s2

K3 = s3

K4 =
1
2
(s1 + s2) + s4

K5 =
1
2
(s2 + s3) + s5

K6 =
1
2
(s1 + s3) + s6

can be re-written as:   Ki = Aijsj where Aij is:

A =

�

⇧⇧⇧⇧⇧⇧⇤

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
.5 .5 0 1 0 0
0 .5 .5 0 1 0
.5 0 .5 0 0 1

⇥

⌃⌃⌃⌃⌃⌃⌅
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So how do we get the      from the measurements     ?si Ki

need tricks from linear algebra:

where B is:

B =

�

⇧⇧⇧⇧⇧⇧⇤

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
�.5 �.5 0 1 0 0
0 �.5 �.5 0 1 0
�.5 0 �.5 0 0 1

⇥

⌃⌃⌃⌃⌃⌃⌅

s̄ = (AT A)�1AT K or s̄i = BijKj
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H

M

M1 = �11H1 + �12H2 + �13H3

M2 = �21H1 + �22H2 + �23H3

M3 = �31H1 + �32H2 + �33H3

In general, M is not parallel to H because 
coefficients 

�ij �= 0 when i �= j
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H

M

But there exists a coordinate 
system where M IS parallel to H.
Axes are called “eigenvectors”: 

V1

V2

V3
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V1

V2

V3

see Appendix
A.3.5.4 for how to find 

eigenvectors and 
eigenvalues



What is AMS good for?
Is a particular fabric axis parallel to some 
direction?  e.g., is the minimum axes parallel 
to the vertical as expected for sediments?


Are two sets of axes distinct?  e.g., has 
strain rotated the rock fabric?


What is the shape of the ellipsoid?  Is it 
“pancake” (as exp.  for sediments?) or “hot-
dog” (as exp. for deformed fabrics?)
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These all require statistical test! - poor 
statistics with just 6 measurements



Statistics for AMS data

• Every measurement has some uncertainty:

• Remember we get average tensor elements::    

• Now we could calculate what measurements we “should” 
have gotten, assuming that the average tensor was correct: 

• and calculate the deviations (residuals) between “average” 
and actual measurements:
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The fun begins

• A measure of the uncertainty is the sum of squared 
residuals:  

• From this we get the estimated variance:

• But what is “degrees of freedom”, nf? It is the number of 
measurements less the number of things you are estimating

• So we need more than six measurements to do any cool 
statistics
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Measurement of AMS in practice

Lots of different protocols (7, 12, 15, “many” 
measurement protocols)


In Appendix D.1 you will find descriptions of 
two commonly used ones:  15 and the 
“spinning” protocols


Each protocol has its own “design matrix”, B 
from which all data reduction flows

17



Parametric significance tests 

Analogous to Fisher statistics - known as 
Hext statistics


Allows calculation of uncertainties in 
eigenvector directions


Allows tests for shape (are the eigenvalues 
significantly different so what shape do we 
have?)
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Uncertainty ellipses of eigenvectors:  
the parametric approach of Hext

where

and this F is another critical value 
for significance at a given level of 

confidence (e.g., p = .05 for 
95%)look up F on an “F-table”



Shapes - the Hext way: 
but first some definitions
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sphere

oblate

prolate

triaxial



F statistics for shapes
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but first,  bulk susceptibility:

Are your data spherical?  Must have F 
less than this:

Are they oblate? 

Are they prolate?



But when do Hext 
statistics apply?

When errors are small


When they have zero mean


AND when they are normally distributed


oops - only for measurement data - rarely 
for data from multiple specimens


maybe you should bootstrap?
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Bootstrapping for AMS
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works just like for directions:  see Chapter 12
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|||||||||| ||||||||||

Eigenvalues
0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.0

0.2

0.4

0.6

0.8

1.0

bootstrapped 
eigenvectors

bootstrapped
eigenvalues



What is AMS good for?

Is a particular fabric axis parallel to some 
direction?  e.g., is the minimum axes parallel 
to the vertical as expected for sediments?


Are two sets of axes distinct?  e.g., has 
strain rotated the rock fabric?


What is the shape of the ellipsoid?  Is it 
“pancake” (as exp.  for sediments?) or “hot-
dog” (as exp. for deformed fabrics?)
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Do these data have a vertical
minimum axis?
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Some comments on AMS statistics

There are many ways of repackaging the 
eigenvalues into anisotropy statistics (see 
Table 13.1)


Typical examples boil the eigenvalues into an 
anisotropy factor (P or P’) and one that 
reflects shape (e.g., shape factor, T) 


this allows only “prolate” and “oblate” - what 
about spherical and triaxial? you lose info


also none incorporate any uncertainty 
estimate
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Anisotropy of magnetic remanence

Different than susceptibility because can 
measure three components at a time - not 
just one. 


So degrees of freedom are calculated 
differently (nf= 3xNmeas-6 instead of 
Nmeas-6)


Useful for:  


correcting absolute paleointensity data for 
anisotropy of TRM


correcting sedimentary data for inclination 
error
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Remember from Chapter 10 
that TRM can be anisotropic:
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Analogous to induced magnetization and susceptibility:

Remanent vectors can be related to the applied field by: 

Where  is the anisotropy of remanence tensor

Knowing that, we could get:

(see Chapter 13 for tricky bits regarding normalization)



TRM anisotropy in practice

• Give specimens total TRM in at least 3 
(usually 6 or 9 for uncertainties) directions.

• Calculate remanence anisotropy tensor 
using the design matrix for your protocol.

• Because each additional heating step can 
produce additional alteration, some 
substitute ARM anisotropy for TRM 
anisotropy

• With ARMs, you have to AF demagnetize 
completely between each ARM acquisition 
step
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Remember 
inclination 

“error” (Chap
ter 7)?

DRM anisotropy may help us to correct for this
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As before:

But in the book, we use terminology of 
Jackson et al. (1991) or:

flattening factor, f, gotten by:

DRM anisotropy tensor has eigenvalues:

so all we need is the DRM anisotropy tensor!

But, this is not so easy.....



How to get DRM anisotropy tensor:

• Redeposition?  NOT

• Measure proxy?  ARM?

• needs to reflect same grains as those 
carrying the DRM

• needs to take into account “particle 
anisotropy”

• what about the effect of flocculation?

• for details see Chapter 13 and Appendix 
D.3
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Assignment

Problem 13.3
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