Announcements

- From now on, the problem sets from each week's homework assignments will be the following Wednesday.
- Late assignments will not be accepted.
- I will post the solutions on line after class on Wednesdays.
- Start thinking about project ideas.
- Oh - and use the online version the textbook for the problems (the print version is out of date)

SIO 247: Lecture 3

- Math refresher (Appendix A.3)
- What is a magnetic field?
- Magnetic units
- Field as the gradient of a scalar potential
- A simple dynamo
- Scalars are 'just numbers’
- Vectors have length and direction

$h=R \cos \theta$ $\mathrm{h}=\mathrm{R} * \mathrm{np} . \cos$ (theta)
$x=h \cos \phi=R \cos \theta \cos \phi$
$y=h \sin \phi=R \cos \theta \sin \phi$
$z=R \sin \theta$

$$
x
$$

$$
\begin{aligned}
& R=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \phi=\tan ^{-1} \frac{y}{x} \\
& \theta=\sin ^{-1} \frac{z}{R}
\end{aligned}
$$
 \title{

Python tricks
 \title{
Python tricks
 np.degrees(phi_in_radians)
}
np.sqrt $\left(x^{* *} 2+y^{* *} 2+z^{* *} 2\right)$
$n p \cdot \arctan 2(y, x)$
np.arcsin(z/R)

Vector addition:
I) break each vector down into its components
$A_{x}=|A| \cos \alpha, A_{y}=|A| \sin \alpha$
2) Add the components:

$$
\begin{aligned}
C_{x} & =A_{x}+B_{x} \\
C_{y} & =A_{y}+B_{y}
\end{aligned}
$$

3) Convert back to:
$|C|$ and γ

Addition and subtraction:

$$
\begin{aligned}
& \overrightarrow{\vec{A}}+\vec{B}=\left(A_{x}, A_{y}, A_{z}\right)+\left(B_{x}, B_{y}, B_{z}\right)=\left(A_{x}+B_{x}, A_{y},+B_{y}, A_{z}+B_{z}\right) \\
& \vec{A}-\vec{B}=\left(A_{x}, A_{y}, A_{z}\right)-\left(B_{x}, B_{y}, B_{z}\right)=\left(A_{x}-B_{x}, A_{y},-B_{y}, A_{z}-B_{z}\right)
\end{aligned}
$$

Scalar multiplication:
$\overrightarrow{C \cdot \vec{A}}=\left(C \cdot A_{x}, C \cdot A_{y}, C \cdot A_{z}\right)$
Dot product:
The dot product is the length of the projection of one vector over a second vector. Dot product is a scalar.
$\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta$, where θ is the angle between a and b . In cartesian coordinate system:
$\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$

Python trick: np.dot (A, B) if A, B are arrays

Cross product:

The cross product of A and B is a vector, which is perpendicular to both A and B.
In cartesian coordinate system:
$\vec{A} \times \vec{B}=\left(\left(A_{y} B_{z}-A_{z} B_{y}\right),\left(A_{z} B_{x}-A_{x} B_{Z}\right),\left(A_{x} B_{y}-A_{y} B_{x}\right)\right)=|\vec{A} \| \vec{B}| \sin \theta$, where θ is the angle between a and b .
The cross operation can be written also in a form of a determinant:

$$
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

> Python trick: $\mathrm{C}=$ np.cross(A,B)
scalar field:

$$
f=f(x, y, z)
$$

vector field:

$$
F=\vec{F}(x, y, z)
$$

gradient of a scalar field: $\quad \operatorname{grad}(f)=\nabla(f)$

topography is a scalar field
direction and gradient of steepest descent is
a vector field

Grad in cartesian coordinates:

$$
\nabla(f)=\left(\hat{x} \frac{\partial}{\partial x} f+\hat{y} \frac{\partial}{\partial y} f+\hat{z} \frac{\partial}{\partial z} f\right)
$$

Grad in spherical coordinates:

$$
\nabla(f)=\frac{\partial f}{\partial r} \hat{r}, \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta}, \frac{1}{r \sin (\theta)} \frac{\partial f}{\partial \phi} \hat{\phi}
$$

SIO 247: Lecture 3

- Math refresher (Appendix A.3)
- What is a magnetic field?
- Magnetic units
- Field as the gradient of a scalar potential
- A simple dynamo

Start with Systeme International (SI)

 units
handy website for fundamental units:

http://geophysics.ou.edu/solid_earth/notes/mag_basic/ fundamental units.htm

Quantity	Symbol	Derived Units	Dimensions
Energy, total	E	joule	$\mathrm{ML}^{2} \mathrm{~T}^{-2}$
Energy, kinetic	K	joule	$\mathrm{ML}^{2} \mathrm{~T}^{-2}$
Energy, potential	U	joule	$\mathrm{ML}^{2} \mathrm{~T}^{-2}$
Force	F	newton	MLT^{-2}
Frequency	n	hertz, cycles/sec	T^{-1}
Gravitational field strength	\mathbf{g}	nt $/ \mathrm{kg}$	LT^{-2}
Gravitational potential	V	joules $/ \mathrm{kg}$	$\mathrm{L}^{2} \mathrm{~T}^{-2}$
Length	l	meter	L
Mass	m	kilogram	M
Mass density	r	$\mathrm{kg} / \mathrm{m}^{3}$	ML^{-3}
Momentum	\mathbf{P}	$\mathrm{kg}-\mathrm{m} / \mathrm{sec}^{2}$	MLT^{-1}
Period	T	second	T
Power	P	watt	$\mathrm{ML}^{2} \mathrm{~T}^{-3}$
Pressure	p	$\mathrm{nt} / \mathrm{m}^{2}$	$\mathrm{ML}^{-1} \mathrm{~T}^{-2}$

Magnetic units in SI:
Electric currents (i) make magnetic fields (H)

More general form of Ampere's Law: $\nabla \times \mathbf{H}=\mathbf{J}$
"The curl of H is the current density"

Let's bend the wire into a loop:

or several loops:

magnetic moment

$$
m=n i \pi r^{2}
$$

units for m: Amperes \cdot meters 2 or Am^{2}
Magnetization $=\frac{\text { magnetic moment }}{\text { volume }}=\mathrm{A} \mathrm{m}^{-1}($ same as H$)$

Ways of thinking about magnetic fields

- magnetic fields are vector fields, having both direction and strength
- strength indicated by how close the lines are together (density of magnetic flux)
- direction indicated by directions of field lines (a.k.a. "lines of magnetic flux")

Could measure direction of H with a compass

But how to measure field strength?

Moving charged particles (electric currents) make magnetic fields (H) and also
moving magnetic fields make electric currents
Let's call the magnetic field that induces the current the "induction", B

B and H are obviously similar but they do NOT (necessarily) HAVE THE SAME UNITS as we shall see

Could measure strength of the induction field like this:

> Units of B: $\mathrm{V} \cdot \mathrm{s} \cdot \mathrm{m}^{-2}$ called a tesla (T)

But how are B and H related?

$$
\mathbf{B}=\mu(\mathbf{H}+\mathbf{M})
$$

μ is the "permeability"
in free space $M=0$ and
$\mu=\mu_{o}$, the permeability of free space
units of μ_{o} (in SI) are nasty!
working them out is a homework problem (1.4)
compasses move in response to the magnetic field

but what moves the magnet?
magnetic energy $E_{m}=-\mathbf{m} \cdot \mathbf{B}=-m B \cos \theta$
proof from dimensional analysis:

$$
A m^{2} \cdot \frac{k g}{A s^{2}}=\text { joule }
$$

remember:

$$
E=\left[M L^{2} T^{-2}\right]=\text { joule }
$$

Now let's do it in cgs
:)

Magnetic units in cgs:

Start with concept of a pair of magnetic monopoles with strength p_{1}, p_{2}

We make up a unit called "electrostatic units" (esu) for pole strength
Coulomb's Law for the force between two electric charges, q_{1}, q_{2} is

$$
F_{12}=k \frac{q_{1} q_{2}}{r^{2}}
$$

Adapting this to magnetic poles, we get: $F=\frac{p_{1} p_{2}}{r^{2}}$
Force in cgs is dynes, so: $\quad F=1 \mathrm{dyn}=\frac{1 \mathrm{~g} \mathrm{~cm}}{\mathrm{~s}^{2}}=\frac{1 \mathrm{esu}^{2}}{\mathrm{~cm}^{2}}$
So the fundamental units of "esu" are: $\quad 1 \mathrm{gm}^{1 / 2} \mathrm{~cm}^{3 / 2} \mathrm{~s}^{-1}$
Remember:

$$
F=\left[M L T^{-2}\right]=\text { newton }(\mathrm{SI}), \text { dyne }(\mathrm{cgs})
$$

What about the magnetic field (B, H)

The monopole creates a magnetic induction in the space around it

We make up a unit of field strength (H) called one oersted (Oe), defined as the field that exerts a force of I dyne on one unit of pole strength (an esu)

The related induction (B) $\mu_{o} H$ has units of gauss (G)

In cgs, the conversion between induction and field $\left(\mu_{o}\right)$ is unity

"What moves the magnet in cgs?

torque on magnet: $\quad \Gamma=p l \times \mu_{o} \mathbf{H}$

Problem I. 2 is to write a python script to convert between the two systems

Table 1.1: Conversion between SI and cgs units.

Parameter	SI unit	cgs unit	Conversion
Magnetic moment (m)	Am ${ }^{2}$	emu	$1 \mathrm{Am}^{2}=10^{3} \mathrm{emu}$
Magnetization			
by volume (M)	Am-1	emu cm-3	$1 \mathrm{Am}^{-1}=10^{-3} \mathrm{emu} \mathrm{cm}^{-3}$
by mass (Ω)	Am ${ }^{2} \mathrm{~kg}^{-1}$	emu gm-1	$1 \mathrm{Am}^{2} \mathrm{~kg}^{-1}=1 \mathrm{emu} \mathrm{gm}^{-1}$
Magnetic Field (H)	Am^{-1}	Oersted (oe)	$1 \mathrm{Am}^{-1}=4 \pi \times 10^{-3} \mathrm{oe}$
Magnetic Induction (B)	T	Gauss (G)	$1 \mathrm{~T}=10^{4} \mathrm{G}$
Permeability of free space (μ_{o})	Hm-1	1	$4 \pi \times 10^{-7} \mathrm{Hm}^{-1}=1$
Susceptibility total (K:mH)	m^{3}	emu oe-1	$1 \mathrm{~m}^{3}=10^{5} 4 \pi \mathrm{emu} \mathrm{oe-}{ }^{-1}$
by volume (X : M H)	-	emu cm-3 ${ }^{-1} \mathrm{el}^{-1}$	$1 \mathrm{S.I} .=1 _4 \pi \mathrm{emu} \mathrm{cm}^{-3} \mathrm{oe}^{-1}$
by mass (κ :mm $\mathbf{1}_{1} \mathbf{H}$)	$\mathrm{m}^{3} \mathrm{~kg}^{-1}$	emu g-1 oe^{-1}	$1 \mathrm{~m}^{3} \mathrm{~kg}^{-1}=10^{3} 4 \pi \mathrm{emu} \mathrm{g}^{-1} \mathrm{oe}^{-1}$

$1 \mathrm{H}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~A}^{-2} \mathrm{~s}^{-2}, 1 \mathrm{emu}=1 \mathrm{G} \mathrm{cm}^{3}, B=\mu_{0} H$ (in vacuum), $1 \mathrm{~T}=\mathrm{kg} \mathrm{A}^{-1} \mathrm{~s}^{-2}$

SIO 247: Lecture 3

- Math refresher (Appendix A.3)
- What is a magnetic field?
- Magnetic units
- Field as the gradient of a scalar potential
- A simple dynamo

Unlike electrical fields (where electric charges produce fields that "diverge" away from the source) there are no isolated charges (monopoles) in nature

So the divergence of B is always zero AND, away from magnetic sources:

$$
\mathbf{B}=\mu_{o} \mathbf{H}
$$

In this special case can view magnetic field as gradient of a

$$
\mathbf{H}=-\nabla \psi_{m}
$$

scalar potential:

SIO 247: Lecture 3

- Math refresher (Appendix A.3)
- What is a magnetic field?
- Magnetic units
- Field as the gradient of a scalar potential
- A simple dynamo

