Lecture 14: Paleointensity

Key assumptions
Paleointensity with TRMs
Paleointensity with DRMs
Paleointensity with IRMs?

Key assumptions:

- The proportionality function between remanence and field is known (usually assumed to be linear)
- The proportionality constant can be approximated in the laboratory

Sounds easy - BUT

- Function may not be linear
- Specimen may have altered capacity to acquire remanence
- lab NRM may not be acquired by same mechanism (constant may be different)
- Anisotropy of remanence acquisition
- NRM may be multi-component

Paleointensity with TRMs: experimental design

- step-wise replacement of NRM with pTRMs (Thellier family of methods)
- step-wise replacement of NRM with microwave induced remanences
- replacement of NRM with total TRM and check for alteration
- many other methods (IRM normalization, multi-specimen approaches, new methods invented every month....)

Assumptions

- pTRMs are additive (law of additivity)
- pTRMs acquired at Tb are removed at same temperature (Tb=Tub); law of reciprocity
- pTRM acquired in lab is equivalent to original
 - no lab alteration
 - linearity assumption?
 - cooling rate and anisotropy can be accounted for

pTRMs are additive - each cooling interval is independent of all others

law of reciprocity

pTRM acquired between 350 and 370C is removed between 350 and 370C

only true for SD grains

consequences in paleointensity experiments: saggy Arai plots

check with "IZZI" or pTRM tail checks

problem of alteration during experiment

can be checked with "pTRM checks"

ideal - accurate

requires subjective judgment

Need a magic mix of selection criteria: exclude the 'bad' data select the 'good' data

 $\begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\$

MAD: directional scatter DANG: deviation from origin

How things go wrong

failure of single domain assumption
failure of linearity assumption
anisotropy of TRM
cooling rate

Whatever method you use

- Must build in checks of fundamental assumptions
- Must have some tests for quality assurance (statistics, acceptance criteria)

State of the database:

http://earthref.org/MagIC/search

Over 20,2000 sites with "absolute" paleointensity in database (method codes: LP-PI and NOT LP-PI-REL)

2013 MagIC database: 0-5 Ma N=2180

Worse news! Data from a single lava flow span the entire range of intensities on Earth!

1960 Kilauea Lava Flow (samples ordered by publication)

Cromwell et al. (submitted)

Without measurements

- No way to quantify alteration tests because there is no standard pTRM check statistic
- No way to tell if non-linear Arai plot or even what fraction of data are used
- No way to tell if MD "sag" is present
- No way to make sure in linear TRM range
- No way to know if cooling rate or anisotropy are problems

With measurements

- Can use "SCAT" to filter out altered, scattered data
- Can use Krv to quantify sagging.
- Can use IZZI method to quantify pTRM 'tails'
- Can repeat total TRM as a function of field to test for non-linearity of TRM acquisition
- Can test for cooling rate dependence and correct for anisotropy

Comparing two sets of selection criteria on results of known answer

CCRIT: Cromwell et al. 2015 TTA: Leonhardt et al. 2004

Paleointensity with DRMs: same two key assumptions

- The proportionality function between remanence and field is known (usually assumed to be linear)
- The proportionality constant can be approximated in the laboratory

In graphical form:

Usual procedure:

- Establish (or assume) DRM origin of ChRM
- Establish magnetic carrier (should be magnetite!)
- Establish homogeneousness of bulk properties (linear relation between ARM, IRM, susceptibility) to rule out changes in magnetic grain size
- Establish maximum bounds for changes in concentration (no more than ~10x)
- Choose bulk normalizer
- (Rarely) compare nearby records

State of the database:

First the good news

Over 100 "relative" paleointensity papers in database

Examples of long records from deep sea sediments

RPI works?

How things go wrong

failure of linearity assumption

 sensitivity of DRM to environmental conditions (salinity, particle size, mineralogy)

In database

- No way to know effect of flocculation on relative paleointensity
- No way to make sure in linear TRM range
- No consistent approach to data quality

In summary

- Theory is getting better and better
- Need to apply theoretical understanding to data selection
- Need access to all the experimental data not just what gets published.