{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# IPython Notebook for turning in solutions to the problems in the Essentials of Paleomagnetism Textbook by L. Tauxe" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem from Chapter 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Problem 2.3: Use the dipole formula ($\\tan (I) = 2 \\tan (\\lambda)$ where $I$ is inclination and $\\lambda$ is latitude and calculate the GAD field at 36 $^{\\circ}$N. Note that declination is always zero for a GAD field. " ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pmagpy.pmag as pmag # this imports the PmagPy module pmag\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline \n", "# This allows us to plot in the notebook environment" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 55.5\n" ] } ], "source": [ "lat = np.radians(36.) # remember to convert to radians!\n", "inc = np.degrees(np.arctan(2.*np.tan(lat)))# and back! \n", "print '%7.1f'%(inc) # and print it out" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's use the pmag function dia_vgp. First let's figure out what it does:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " converts declination, inclination, alpha95 to VGP, dp, dm\n", " takes input as (Decs, Incs, a95, Site latitudes, Site Longitudes). \n", " These can be lists or individual values.\n", " Returns longitude, latitude, dp, dm\n", " \n" ] } ], "source": [ "print pmag.dia_vgp.__doc__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can use it to convert our directions to VGPs. Note that alpha95 is require but is not given here so we supply a zero in its place. Note also that westward longitudes are indicated by minus signs." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 130.6 75.1\n" ] } ], "source": [ "vgp_lat,vgp_lon,dp,dp= pmag.dia_vgp(345,47,0.,36,-112) \n", "print '%7.1f %7.1f'%(vgp_lat,vgp_lon)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problems from Chapter 3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem 3.1a" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Calculate the magnetostatic interaction energy for one Bohr magneton in a field of 40 $\\mu$T and plot for angles 0 $\\rightarrow$ 180. To do anything, we need to import numpy and matplotlib first. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Use the equation: $E=-m_b B \\cos(\\theta)$ for range of $\\theta$s. " ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEZCAYAAACNebLAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVNX9//HXh2IBEawRRcCGvWHBGlZRUYzYu0bRn4m9\nJhrRbyTGWNAkGmsSS0QFCzZQVERYRRBFiiBFUVBQsSCKCEr9/P44Z2FYZ3Znd2fmzuy+n4/HPPbO\nrZ+5MzufOefce465OyIiIpU1SjoAEREpTkoQIiKSlhKEiIikpQQhIiJpKUGIiEhaShAiIpKWEoTU\nC2a2qZn9YGaWdCxSWGY2w8wOTDqO+kgJooiZ2Sdm9rOZrVtp/jgzW25mbZOKLcZxnZn1ycF+2sXX\nk/XnsfKXgrvPcve1XTf2iOSMEkRxc2AGcHLFDDPbAVgzLqsvjPB66u2vfzNrnHQM6RRrXFIclCCK\n3yPAGSnPzwAeTl3BzLqZ2Vgzm2dmn5rZdZWW/zaWRr4xs2tTf33HUsATZvZwrKKZaGYdU7ZtbWb9\nzexrM/vYzC6K87sCPYETzWy+mY1LWf95M/vWzD40s/+Xsq89zGx0jHO2md0WF70e/34fY+hkZpub\n2WtmNice+1EzWzvupw/QFhgY1/9D5VKIma1jZg+a2ecxlmcynWAzO8vMJsf1XkotmcV9/j6+lrlm\ndlcNtz3fzD4EPozzDjGzqWb2nZndbWblcR9N4z62T9l+AzNbYGbrVTrmanH77VLmrW9mC81s/fj8\nN7Gk+Z2ZvWlmO6asO8PMrjSz94AfzayRmV1lZp/F8znFzA6I6z5kZtenbNvZzGalPE+7XZpznPEz\nmvLe/TYu+9rMeqYsXyN+Puea2SQz+2NqDJWOY2b2JzP7yMLn/XEza5VuXcmCu5fEA3gA+AqYkIN9\n7QyMBCYC44ETUpZ1i/PGAW8Amyf4mmcABwJTgK0JCX0msCmwHGgb1/s1sH2c3gGYDXSPz7cD5gN7\nA02AW4FFwIFx+XXAQqAr4Rf8jcBbcZkB7wLXAI2B9sBHwMEp2/apFPMbwJ1A03ievwbK4rKRwKlx\nuhmwZ5xuBywDLGU/WwBdYszrAeXAPyqdmwNSnlfso1F8/iLQD1g7xr5/hnN8JOHLu0M8vz2BESnL\nlwMDgBbxvH8NHFKDbV8BWgKrx9cxL27XCLg4vhdnxfXvAm5K2f5i4PkMcd8P/DXl+fnAoDi9K+F/\nZff4Hp4ez1fTlHM3Ftg4xtWB8Ln6VVzeFtgsTj8EXJ9ynM7AzDidcbs08Vb1GW0Xz9W/gdWAnYCf\nga3j8puBYfG93Bh4ryKG1P+TOH0J4XPWmvAZvBfom9T/cKk/Eg8g60BhP2AXcpMgtgS2iNOtgS+A\ntePzGUCHOH0e8GCCr7kiQfQkfHF3jV84jUlJEGm2+yfw9zj9f8BjKcvW5JcJYnDK8m2BBXG6E/BJ\npX3/CXggZds+KcvaAEuAZinzbqw4h4SSwnXAepX2ucqXe4bXdCQwpvK5SbeP+J4urXhPqznHg4Ae\nKc8bAQuATePz5cDeKcufAK6swbadU5afTkoCifNmsjJBdAI+TVk2GjguQ9xdgI9Snr/JyuR7D/CX\nSutPJSbJeO7OSFm2BfBl3GeTSttVlSAybpfFeU/9jFa8d61Tlr9N/OEGfAwclLLsbDIniMms+sOh\nNbC4qs+WHpkfJVPF5O5vAt+lzovVEC/FaovXzaxDlvv6yN0/jtOzCb8KN4iLZwMVRdKWhOSRtEeB\nU4AzgV80CscqmaGxaP498Htg/bh4Y2BFcdzdfwK+rbSLL1OmFwJrxKqatsAmsWg/18y+A64GNswQ\n58bAXHdfmDLvU2CTOH0WoSQ01czeNrPDM71gM9vQzPrF6ovv4zlYP9P6lbSJcfyQxbrtgDsqXiPh\n3HhKzBB+jVdYCKxVg20/S5le5b2ovNzd3wYWxmqcrQlfwAMyxD0MWNNCtV07QmntuZS4rqj0vrWJ\nx0933I+BS4FewFdm1tfMNspw3BUybNc63bpmtmcVn9EKmc7zxqx6HtNWL0XtgGdT3pPJhB8tv6ru\n9cgvlUyCyOA/wIXuvgfwR0JxskbMbE9C0fvjOOtC4CUzmwmcRijeJsrdZxJ+JR0GpKtLf4zw5bCJ\nu7ciFNUrGnxnE74cADCzNQlVHdmYBUx393XjYx13b+nuR1SEVmn9L4B1zax5yry2wOfxdXzs7qe4\n+wZAb6B/jKfyfiCUPJYTqiVaEd6L1EbsdNukxr2uxTaLaswEfl/pNa7l7qOy2HZWFtumxjmbUE2V\nqk2l5w8TShqnA/3dfXG6A7v7cuBJwg+Hk4EX3H1BSlx/SxPXExniwt0fd/f9CV+wALfEvwsI1YEV\nWlezXab/l75k/oxWZ5XPMOEzlclM4LBKr715/CEoNVSyCSJ+Ce0DPGWhgfTfxF8JZna0hcbWCSmP\niWb2UqV9tCb8Ij8zPjdCo3BXd29LKF7/s2AvqmpnEYrRP6VZthbwnbsviQnvlJRl/YEjzGwvM2tK\n+LVXnYp/3HeA+bFBcw0za2xm25vZ7nH5V0D7eN5w988I9b83mdnqZrYToTrgEQAzO7WiEZVQF++E\nJPBN/LtFSgwtgB/j8Tch/ABI9SWwebq43f1L4CXgHjNrZWZNzGz/DK/130BPiw2+ZtbSzI6r9gwF\n99Vw2xeBHcysezyXF/LLX7aPAUcDp5KmtFhJP+BEwvvdN2X+f4Fz42cBM2seG4mbp9kHZtbBzA4w\ns9UI1TE/Ed4PCO1x3Sw0+m9EqOPPZrvKqvqMQtXJ4kng6vhebgJcUMW6/wZutHixgIWG/u5VrC9V\nSbqOqyYPwq+UCXG6BfB5HfbVAhgDHJ0yb0NgWsrzTYH3E3y900mpZ0+Z35hQZ1vRSH0M8AnhS3cA\n8C9WbRv4LaGq5xtCg/MsYN+4rHI7QuXG3o0IXz6zCVUoI1lZ37suMByYC7wb520CDIzrTgPOSdn3\nI4Sk8gPhAoEjUpb1IlT1zQX2JDSuvxvXHQtcxqr1zt3ja5oLXJ4m7lbA/wiJ5FvCr/FM5/lUYALw\nfdzn/SnLlpFyoQLwIKvWyWe9bZx3CPABobr0LmAEse0gZZ0hhJJbNp+RafF9rdx2cAghwc8llOCe\nAJqn+1wBOxLq/OcBc+JnaKO4bHXg8bhsPCFBzKxuuzRxZvyMVn7v4ryhrGybaUZIlt8Bkwhtcqn/\npyteDyHRXEpoc5kXz88NSf0Pl/rD4klNVKzvfhf4zN0zZnszaw8MdPcd4/M3gdvdvX98vpO7T8ji\neE2BlwlXiPwrZb4R6jo7u/tHZnY2cKi7H1/rF1dk4q/I74Et3f3TpONpyFI+b6e4++sp8+8HvnD3\nPycWXBEzs3OBE9097SW1kjvFUsV0CaExKSMz60v49drBzGaaWQ/Cr7ezzWy8mb1P+FWZjRMIV0Wd\naeFa8bExuTihKqei2upUflm1UXIsXBO/ZkwOfyeUwpQcEmDhPoiWZrY6oTQHMCpleTvCr+0Hkoiv\nGJnZRma2jwVbA1eQvi1OcizxEoSZtSHU9f8NuLyqEoTUjpn9F6ioG38XON/dpyUYUoNl4QaxiwjX\n6E8GLnL3d+Oy6wnVIze6e+IXRxSL2J7wIuE+nO8JbS893X1pknE1BMWQIJ4iJIeWwBVKECIixSHR\nKiYL18F/5e7jCY1L9bYvHhGRUpNoCcLMbiRc376UcIdvC+AZd/9tpfWSb0kXESlB7l7rH96JliDc\nvae7t3X3zYGTgKGVk0PKukX1uO666xKPoRRiKta4FJNiaghx1VWxXMUkIiJFpknSAVTwcB3469Wu\nKCIiBaESRC2VlZUlHcIvFGNMUJxxKabsKKbsFWtcdZH4Za7ZMDMvhThFRIqJmeGl2kgtIiLFq2ja\nIEREJLMFC+Czz8Ljiy/gu+9g3rxVHwsWwOLFcNll0K1b3Y+pBCEiUiTmzYOpU2HKlJWPTz4JSeGn\nn6BNm/Bo3RrWXRdatoQNN4SttoJWraB5c1h9ddh++2oPlRW1QYiIJODbb2H06PB45x0YOzYkiK23\nhm23XfnYfPOQFNZbD6yGrQl1bYNQghARKYAZM2DoUBg2DEaNgq+/ht12gz33DI/ddoO2baFRDluG\nlSBERIrQnDnw6qvw2mshMSxYAAceGB777htKCo0b5zcGJQgRkSLx0Ufw/PPh8d57UFYGXbqEx3bb\n1byKqK6UIEREEjRxIvTrF5LC3LlwxBFw5JEhKayxRrKxKUGIiBTYrFnQty889hh8/z2cdBIceyzs\nsUdu2xDqSglCRKQAFiyAJ5+Ehx8OpYZjj4VTT4X99y+upJBKCUJEJI8mToR//ztUI+2zD5x9Nhx2\nWLjfoNjVNUHoRjkRkUoWLYInnoD77oOZM0NSGD8eNt006cgKSyUIEZFozhy491645x7YeWc47zw4\n/HBoUqI/pVWCEBGpow8+gNtvD6WGY46BIUNy111FKSvSphURkfwbMwaOOio0NG+wQej76P77lRwq\nqAQhIg3O22/DX/8a2hWuuipcstqsWdJRFR8lCBFpMEaOhOuvh8mT4eqroX//5G9mK2aJJggzWx14\nA1gtPp53955JxiQi9c9774WEMGUK9OwJAwbAaqslHVXxS7QNwt0XAQe4+67ATsCBZrZvkjGJSP0x\nYwacdhocemgYQOeDD+Ccc5QcspV4I7W7L4yTqxPi+S7BcESkHvj6a7j4Yth9d+jQAT78EC68UImh\nphJPEGbWyMzGAV8C5e4+OemYRKQ0LVoEvXuv7Dl1yhT485+hRYukIytNiTdSu/tyYFczWxsYbGad\n3f31pOMSkdLhDgMHwuWXh+Tw1lthGE6pm8QTRAV3/8HMXgR2B36RIHr16rViuqysjLKysoLFJiLF\na9IkuOyyMG7z3XdD165JR5Sc8vJyysvLc7a/RLvaMLP1gSXuPs/M1gReAf7i7q9VWk9dbYjIKubP\nD9VHjz0G//d/cO650LRp0lEVl7p2tZF0G0RrYFhsgxgFDKicHEREUrmH+xe23RZ++CHc03DRRUoO\n+aDO+kSkZEyfHq5G+vTT0NPq/vsnHVFxK/UShIhItZYsgZtugj33hM6dYdw4JYdCKJpGahGRdMaN\ngx49oHVrePddaN8+6YgaDpUgRKQo/fwzXHNNuAv6iitg0CAlh0JTCUJEis6oUXDWWbDNNqEfpY02\nSjqihkkJQkSKxs8/h0tWH3kE/vUvOP74cEe0JEMJQkSKwoQJoWO9LbeEiRPDAD6SLLVBiEiili+H\n226DLl1CVxlPP63kUCxUghCRxHz6KZx5JixdCu+8A5ttlnREkkolCBEpOHd49NHQHXfXrlBeruRQ\njFSCEJGC+v770G/ShAkweDDsumvSEUkmKkGISMG88w507Ajrrw9jxig5FDuVIEQk79zhn/+Em2+G\ne++FY49NOiLJhhKEiOTVt9+Ghuivv4a331ZbQylRFZOI5M2IEaEaaeutYfhwJYdSoxKEiOTc8uVw\nyy1w++1w//1wxBFJRyS1oQQhIjk1dy6cfjrMmxd6X91006QjktpSFZOI5Mz48bDHHtChAwwbpuRQ\n6pQgRCQnHnkEDj4YbrghXLGkIUBLn6qYRKROFi8O4zW8/DIMHQo77ph0RJIriZYgzKyNmQ01s0lm\nNtHMLk4yHhGpmS++gAMOCH0qjR6t5FDfJF3FtBS43N23B/YGLjCzbRKOSUSyMHx4aG/o1g2eew5a\ntUo6Ism1RKuY3P1L4Ms4/aOZTQE2AaYmGZeIVO2+++C666BPn9DZntRPRdMGYWbtgV2At5ONREQy\nWbIELr00XKE0YkQY3Efqr2oThJltAXzm7ovMrAzYCejj7t/nKggzWwvoD1zi7j+mW6dXr14rpsvK\nyigrK8vV4UUkC99+G4YAXXNNeOstaNky6YiksvLycsrLy3O2P3P3qlcwGw/sDrQHBgHPA9u7e7ec\nBGDWBHgBeMnd78iwjlcXp4jkz6RJ0L07HHcc3HgjNG6cdESSDTPD3Ws9qnc2jdTL3X0pcDRwp7v/\nEWhd2wOm8SAwOVNyEJFkvfBCuFKpV6/QfYaSQ8ORTRvEEjM7GTgDqOhRJSe3wJjZvsCpwEQzGwc4\n0NPdX87F/kWk9tyhd2+4804YOBA6dUo6Iim0bBJED+Bc4G/uPsPMNgMeycXB3X0EoN8jIkVm0SL4\n3e9C1dKoUdCmTdIRSRKqbYMAMLM1gbbu/kH+Q0p7fLVBiBTI3Llw9NGw3nph3OhmzZKOSGor720Q\nZnYEMB54OT7fxcwG1PaAIlK8PvoI9toL9twT+vdXcmjosmmk7gXsCXwP4O7jgc3zGJOIJODNN2G/\n/UK/SrfeCo2S7mdBEpdVI7W7zzNbpZSyPE/xiEgC+vYNN8A98ojujJaVskkQk8zsFKCxmW0FXAyM\nzG9YIlII7qF77gcegNdeU2d7sqpsbpRrBlwDHAIY8ArwV3f/Of/hrYhBjdQiObZ48corlQYOhI02\nSjoiybW6NlJndRVT0pQgRHJr/nw49tjQbUbfvtC8edIRST7UNUFkrGIys4GEG9fScvfutT2oiCRn\n9mw4/PBwpdJdd0GToumyU4pNVR+N2woWhYgUxNSpcNhhcPbZcM01YLX+bSkNgaqYRBqIkSPhmGPg\nppugR4+ko5FCyFsVU8oBZpCmqsnddS+ESIl47jk455wwwM9hhyUdjZSKbGofd0+ZXgM4Hlg3P+GI\nSK7dey/89a/w0kuw++7Vry9SoVZVTGY2xt13y0M8mY6nKiaRGnKHa6+FJ5+El1+GLbZIOiIptEJU\nMXVMedqIUKLQdQ8iRWzJklClNGVKaHvYYIOkI5JSlM0X/d9TppcCnwAn5CUaEamzhQvhhBNCCWLo\nUN3jILWnq5hE6pHvv4cjjoD27eHBB6FpTob2klJViO6+W5rZP8zs3fj4u5lpuHKRIvPll9C5M3Ts\nCA8/rOQgdZdNh74PAvMJ1UonAD8AD+UzKBGpmenTQ1fdxx0Ht9+urrolN7LprG+8u+9S3bx8UhWT\nSGYTJ4Z7G3r2hPPPTzoaKSZ5r2ICfjKz/VIOuC/wU20PWJmZPWBmX5nZhFztU6ShGDkSDjooDPCj\n5CC5lk0JYhfgYaAlobvvucCZ7v5eTgIIyedHoI+775RhHZUgRCp56SX47W/DID+HHpp0NFKMCtbd\nt5mtDeDuP9T2YFXsux0wUAlCJDv9+oUR4J59FvbZJ+lopFjls7vvyzMdEFgEfAwMdncNPypSQHff\nHTrcGzJEI8BJflV1o1yLKpatA3QBzqJAN8316tVrxXRZWRllZWWFOKxI0XAPfSr16QNvvAGbq7tM\nqaS8vJzy8vKc7a9ON8qZ2YRM1UI13I+qmESq4A5XXBHGjX7lFQ0PKtnJe19MVclFcogsPkSkkuXL\n4YILYOxYKC+HddZJOiJpKBK/ncbM+gIjgQ5mNtPMNJSJSLRsGZx1Frz/Prz6qpKDFJb6YhIpUkuW\nwOmnw5w58Pzz6nRPaq4Q3X2vDhwLtE9d392vr+1BRaRqixbBiSfC0qXwwguwxhpJRyQNUTZtEM8D\n84AxhMtbRSSPFi4MY0evtVYY7Ge11ZKOSBqqbBJEG3fXfZoiBfDjj6G77o03Dj2yNtHQXJKgbBqp\nR5qZbscRybN58+CQQ8LQoH36KDlI8rLpi2kysCUwg1DFZIDn8BLXaqmRWuq7b7+Frl1h773hjjvU\nXbfkRiHugzistjsXkep99RUcfHDocO+WW8B0R5AUiar6Ylo7dsw3v4DxiDQon38OXbrASSfBddcp\nOUhxyVjFZGYvuPtvzGwG4Kx6p7O7e8F6glEVk9RHn3wSksPvfgdXXZV0NFIfFay77yQpQUh9M21a\nGOjnD3+Aiy5KOhqprwoxopyI5NDkyVBWBtdeq+QgxU0X0okU0PjxYfzoW2+F005LOhqRqilBiBTI\nO++Em+DuvhuOOy7paESqV20Vk5ntZWYtUp6vbWad8huWSP0yfDj85jfwwANKDlI6srlRbhzQsaKV\n2MwaAe+6e8cCxFcRgxqppWQNGQInnwx9+4b7HUQKpRCN1Kt8O8cxqFU1JZKFF18MyeHpp5UcpPRk\nkyCmm9nFZtY0Pi4Bpuc7MJFS9/TTYbCfF16AX/866WhEai6bBHEusA/wOfAZ0An4XT6DEil1jz0G\nF14IL78MndRiJyVKN8qJ5NgDD8Cf/wyDB8P22ycdjTRkeeusz8yudPfeZnYnoauNVbj7xbU9qEh9\ndddd0Ls3DBsGHTokHY1I3VTV2Dwl/n03nwGY2aHA7YTqrgfc/ZZ8Hk8kX269Fe69F15/HTbbLOlo\nROouY4Jw94FxcqG7P5W6zMyOz8XB4yWzdwFdgC+A0Wb2vLtPzcX+RQrBHa6/PlzG+sYb0KZN0hGJ\n5EY2jdRXZzmvNvYEprn7p+6+BHgcODJH+xbJO3e4+mro31/JQeqfqtogDgO6AZuY2b9SFq0NLM3R\n8TcBZqU8/4yQNESK3vLlcOmlMGJEaHNYf/2kIxLJraraIL4gtD90B8akzJ8PXJbPoNLp1avXiumy\nsjLKysoKHYLICsuWwbnnwvvvw2uvQatWSUckAuXl5ZSXl+dsf9l0tdE0Vv/knJntBfRy90Pj8z8R\nBiO6pdJ6usxVisbSpdCjB8yaBQMHQosW1W8jkoRCjEnd3sxuArYD1qiYmaMR5UYDW5pZO2A2cBJw\ncg72K5IXixfDKafA/PkwaBA0a5Z0RCL5k00j9UPAvYR2hwOAPsCjuTi4uy8DLgQGA5OAx919StVb\niSTj55/h2GNhyRIYMEDJQeq/bKqYxrj7bmY20d13TJ1XkAhRFZMkb8ECOOooWHddePRRaNo06YhE\nqleIKqZF8X6FaWZ2IaFPprVqe0CRUjN/Phx+OGy+eehGo3HjpCMSKYxsqpguAZoBFwO7AacBv81n\nUCLF4rvvQjfd228PDz6o5CANSzYJor27/+jun7l7D3c/Fmib78BEkvbNN3DggbD33nDPPdAom/8W\nkXok6TupRYrS7NlQVgbdusE//gFW61pckdKV9J3UIkVn1izo0gXOOAOuuSbpaESSUzJ3UosUwvTp\ncNBBYbCfyy9POhqRZNXoTmozWwfY1N0nFCK4lBh0mavk3dSpoUG6Z08477ykoxGpu7pe5ppNG8Sr\nZra2ma0LjAX+a2b/rO0BRYrRhAmhQfqGG5QcRCpkkyBauvsPwDFAH3fvRBi/QaReGD0aDjkEbr89\ntDuISJBNgmhiZq2BE4AX8hyPSEENHx5ugvvvf+GEE5KORqS4ZJMgrgdeAT5299FmtjkwLb9hieTf\nq6+GvpX69oUjjkg6GpHiU20jdTFQI7Xk2sCBcPbZ8MwzsN9+SUcjkh95b6Q2szZm9qyZfR0fT5uZ\nBlaUkvXkk3DOOfDii0oOIlXJtrvvAcDG8TEwzhMpOQ8/HIYJHTwY9tgj6WhEils290GMd/ddqpuX\nT6pikly45x64+ebQ9rD11klHI5J/hbgP4lszO83MGsfHacC3tT2gSBJuuy08Xn9dyUEkW9mUINoB\ndwJ7Aw6MBC5y91n5D29FDCpBSK24w/XXQ79+MGQItFHrmTQghRgwqI27d6900H2BgiUIkdpwh6uu\ngpdfDiWHX/0q6YhESks2JYix7t6xunn5pBKE1NTy5aHDvdGj4ZVXwlChIg1N3koQZrY3sA+wgZml\n9mu5NlDncbXM7DigF7AtsIe7j63rPkUAliwJXWbMng2vvQZrr510RCKlqaoqptUIY083AVqkzP8B\nOC4Hx54IHA38Owf7EgFg4UI4/vgwNOigQbDmmklHJFK6MiYId38deN3M/ufun5pZM3dfmKsDu/sH\nAGYaq0tyY9680GVGu3Zh/OimTZOOSKS0ZXOZ68ZmNhmYCmBmO5vZPfkNS6RmvvkGDjgAdtop3Ayn\n5CBSd9lcxXQ70JVwNzXu/p6Z/TqbnZvZq0DqtSNGuFT2GncfWJNAe/XqtWK6rKyMsrKymmwu9djM\nmaG77hNOgL/8ReNHS8NVXl5OeXl5zvaXzVVMb7t7JzMb5+67xnnvufvOOQnAbBhwRVWN1LqKSTL5\n8MMwCtyll8JlGghXZBWFuA9ilpntA7iZNQUuAabU9oAZ6Def1Ni4cWEshxtugLPOSjoakfonmzaI\nc4ELgE2Az4Fd4vM6MbOjzGwWsBfwgpm9VNd9SsMxfDh07Qp33aXkIJIvGg9CSs6gQeE+h759Q/WS\niKSX9yomM9sAOAdon7q+u+t3mxTc44/DJZfAgAGw995JRyNSv2XTBvE8MBwYAizLbzgimd1xB9x6\na+h0b8cdk45GpP7LJkE0c/er8h6JSAbucPXV8PzzMGJEuBFORPIvm0bqF8ysW94jEUljyRI480wo\nLw8N00oOIoWTzX0Q84HmwCJgCfFmN3cvWBdoaqRumBYsCP0qmYVxpJs3TzoikdKS9xHl3L2Fuzdy\n9zXdfe34XP1jSl7NmQNdusCGG8Jzzyk5iCQhm6uY0o37MA/41N2X5j4kaeg+/TTc43D00XDjjeo6\nQyQp2VQxjQI6ErrnBtgReB9oCZzn7oPzGiGqYmpIJkyAbt3gj38Ml7OKSO3lvYoJ+ALY1d13c/fd\nCHdSTwcOBnrX9sAilb3xBhx0ENx2m5KDSDHIJkF0cPdJFU/cfTKwjbtPz19Y0tA8/jgcd1y4O/qk\nk5KORkQgu/sgJpnZvcDj8fmJwGQzW51wVZNIrbnDLbfAPfeEG+B22inpiESkQjZtEGsC5wP7xVkj\ngHuAnwk30f2Y1whRG0R9tWQJXHABjB4NL7wAm2ySdEQi9Utd2yDUWZ8kYv78cI9Do0bwxBPQokX1\n24hIzeS9kdrMtjKz/mY22cymVzxqe0CRzz6D/feH9u1Dp3tKDiLFKZtG6oeAe4GlwAFAH+DRfAYl\n9dd778E++8App8C990KTbFrBRCQR2bRBjHH33cxsorvvmDqvIBGiKqb64pVX4LTTwiA/J56YdDQi\n9V8hhhxdZGaNgGlmdiFhVLm1antAaZjuvx+uvRaefRb226/69UUkedmUIPYgjEHdCvgr4Q7q3u4+\nKv/hrYhkuJ15AAATDklEQVRBJYgStWwZ/OlPoT+lQYNgq62Sjkik4dBVTFK0fvgBTj019Mr61FOw\n3npJRyTSsOStisnMBlS1obt3r+1B4/57A0cQuhH/GOjh7j/UZZ9SPKZPh+7dQ3XSnXdC06ZJRyQi\nNZWxBGFm3wCzgH7A24RxIFZw99frdGCzg4Ch7r7czG4Ou/SrM6yrEkQJGT4cTjgBevaECy9Ub6wi\nSclnI/VGhA75TgZOAV4E+qX2y1QX7j4k5eko4Nhc7FeS9eCDoc3h0UfhkEOSjkZE6iJjgnD3ZcDL\nwMux36WTgXIz+4u735XjOM5iZV9PUoKWLYMrrww3vr3xBmyzTdIRiUhdVXmZa0wMhxOSQ3vgX8Cz\n2e7czF4FfpU6C3DgGncfGNe5Blji7n2r2levXr1WTJeVlVFWVpZtGJJn330XbnxbvBjefhvWXTfp\niEQapvLycsrLy3O2v6raIPoAOwCDgMfd/f2cHXXlMc4EzgEOdPdFVaynNogiNWFCGPntyCOhd2/d\nGS1STPJ2mauZLQcWxKepKxmhQblO41Kb2aHA34Ffu/u31ayrBFGEHn8cLroI7rgjlCBEpLiU7H0Q\nZjYNWA2oSA6j3P38DOsqQRSRpUtDQ/Qzz4THLrskHZGIpFOIrjbywt11T20JmjMn9KPUuHEYx0E3\nv4nUX9n05ioCwNixsPvusMce8NJLSg4i9Z0ShFTLHf7zH+jaFW69FW6+OZQgRKR+0zUnUqUff4Tf\n/z5crTR8uO5vEGlIVIKQjN5/P1Qnrb56uL9ByUGkYVGCkLQeeggOOCBcrfTgg9CsWdIRiUihqYpJ\nVrFgAVxwAbzzDpSXw/bbJx2RiCRFJQhZYfJk2HNPWL48JAglB5GGTQlCcIe774Zf/xouuwwefhjW\n0qCyIg2eqpgauK++grPOCn9HjoQOHZKOSESKhUoQDdigQbDrrrDzzkoOIvJLKkE0QD/9BH/8Iwwc\nCP36QefOSUckIsVIJYgG5r33QncZc+aEaSUHEclECaKBWLIEbrgBDjoo3NvQrx+0apV0VCJSzFTF\n1ABMnAhnngkbbBA63Nt006QjEpFSoBJEPbZ0Kfztb3DggXDeeaEHViUHEcmWShD11MSJ0KNHGB96\nzBho2zbpiESk1KgEUc/89BP07BlKDb//PbzyipKDiNSOShD1yJAhcO65sNtuoXvu1q2TjkhESlli\nCcLMrgeOBByYA5zp7p8lFU8p++YbuOIKeOMNuOce6NYt6YhEpD5Isoqpt7vv7O67AM8DvRKMpSQt\nWxZGetthB9hwQ5g0SclBRHInsRKEu/+Y8rQ5oRQhWXrrLbjwQmjeHAYPDt1liIjkUqJtEGZ2A/Bb\nYCHQKclYSsWXX8JVV8Frr0Hv3nDyyWCWdFQiUh/ltYrJzF41swkpj4nx7xEA7n6tu7cFHgJuz2cs\npe7nn+G222DHHUPj85QpcMopSg4ikj95LUG4+8FZrtoXGFTVCr169VoxXVZWRllZWa3jKiXLl4du\nMa65BnbZBd58E7beOumoRKQYlZeXU15enrP9mbvnbGc1OrDZlu7+UZy+CNjT3U/PsK4nFWeShg2D\nP/wBmjSBW28NA/qIiGTLzHD3WtczJNkGcbOZdQCWAdOB8xKMpaiMHw/XXhuGAL3pJjjhBFUliUjh\nJVaCqImGUoJ4/33o1QtGjAg9rp57Lqy+etJRiUipqmsJQl1tFIEpU+Ckk0JX3HvvDR9/DJdcouQg\nIslSgkjQ+PHhMtXOncPQnx99FO6IbtYs6chERJQgCs4dhg6Frl3h8MNDYvj443Bvw1prJR2diMhK\n6qyvQJYtg2eeCTe3zZ8PV14JAwaoGklEipcSRJ598w3cfz/cdx9sskm4n6F7d2ikspuIFDl9TeWB\nO4waBaefDlttBdOmhdLDyJFw1FFKDiJSGnSZaw7NmRPuen7oIZg3Lwzz2aMHrLde0pGJSENU18tc\nlSDqaPHiMNbzww+HDvQOPxzOOAMOPlglBRFJlhJEApYuDYPzPP00PPVU6BvpjDPg+OOhZcukoxMR\nCUq5q42SsmhRKCE8/XS4+qhdOzj22DAuwxZbJB2diEjuqQRRhU8+gVdeCQPyDB0K220XksIxx0D7\n9gUPR0SkRlTFlEPffBOuNBoyJCSF778PbQldu4a/G22U9xBERHJGCaKWli4NfSCNHBmqiUaOhK+/\nhk6d4IADQlLYeWc1NItI6VKCqMby5TB7NkyaBBMnwoQJ4e/UqdCmDeyzz8rHdtspIYhI/dFgE8Ty\n5eFegzlz4Ntvw2POnJAMPvkEZswIf2fODFcWbbst7LRTGLJzp51g++2hefNEXo6ISEE0mASxySbO\n4sXhaqLFi8OjRYtwE9r664e/660X2gk22yw0Im+2WbjaSL2jikhD1GASxMyZzmqrhc7tKv42bpx0\nZCIixavBJIhSiFNEpJhoRDkREcmLxBOEmV1hZsvNbN2kYxERkZUSTRBm1gY4GPg0yThqo7y8POkQ\nfqEYY4LijEsxZUcxZa9Y46qLpEsQ/wT+mHAMtVKMH4ZijAmKMy7FlB3FlL1ijasuEksQZtYdmOXu\nE5OKQUREMstrb65m9irwq9RZgAPXAj0J1Uupy0REpEgkcpmrme0ADAEWEhJDG+BzYE93/zrN+rrG\nVUSkFkr+PggzmwF0dPfvko5FRESCpBupKziqYhIRKSpFUYIQEZHiUywliLTM7FAzm2pmH5rZVQnG\n0cbMhprZJDObaGYXx/nrmNlgM/vAzF4xs4KOSG1mjcxsrJkNKIZ4YgwtzewpM5sSz1enpOMys6tj\nLBPM7DEzWy2JmMzsATP7yswmpMzLGEeMe1o8l4cUMKbe8ZjjzexpM1s76ZhSlv3ixtokYzKzi+Jx\nJ5rZzUnHZGZ7mNk7ZjYu/t29TjG5e1E+CMnrI6Ad0BQYD2yTUCwbAbvE6bWAD4BtgFuAK+P8q4Cb\nCxzXZcCjwID4PNF44nH/B/SI002AlknGFT8/04HV4vMngDOSiAnYD9gFmJAyL20cwHbAuHgO28f/\nBStQTAcBjeL0zcBNSccU57cBXgZmAOvGedsmeJ7KgMFAk/h8/SKIaRhwSJw+DBhWl/eumEsQewLT\n3P1Td18CPA4cmUQg7v6lu4+P0z8CUwgf1iOBh+NqDwNHFSqmeBd6N+D+lNmJxRNjWhvY390fAnD3\npe4+L+G4fgAWA83NrAmwJuGKuYLH5O5vApUvxMgUR3fg8XgOPwGmEf4n8h6Tuw9x9+Xx6SjCZz3R\nmKJ0N9YemWBM5xES+tK4zpwiiGk24UcZQCvCZx1q+d4Vc4LYBJiV8vyzOC9RZtaekLVHAb9y968g\nJBFgwwKGUvHPktqIlGQ8AJsBc8zsoVj19R8za5ZkXB6ujPs7MJPwzzLP3YckGVMlG2aIo/Ln/3OS\n+fyfBQyK04nFVMWNtUmepw7Ar81slJkNM7PdiiCmPwH/MLOZQG/g6rrEVMwJouiY2VpAf+CSWJKo\n3MJfkBZ/Mzsc+CqWaqq6+qvQVyA0AToCd7t7R2AB4QObyHkCMLPNCVVx7YCNCSWJU5OMqRrFEgdm\ndg2wxN37JRzHmoQba69LMo40mgDruPtewJXAUwnHA/AAcJG7tyV87h+sy86KOUF8DrRNeV5xM10i\nYvVEf+ARd38+zv7KzH4Vl28E/OImvzzZF+huZtOBfsCBZvYI8GVC8VT4jPAr7934/GlCwkjqPAHs\nDoxw97nuvgx4Ftgn4ZhSZYrjc2DTlPUK+vk3szMJVZinpMxOKqYtCPXm71m4Z6oNMNbMNiTZ74lZ\nwDMA7j4aWGZm6yUcUyd3fy7G1B/YI86v1XtXzAliNLClmbUzs9WAk4ABCcbzIDDZ3e9ImTcAODNO\nnwE8X3mjfHD3nu7e1t03J5yXoe5+OjAwiXhS4voKmGVmHeKsLsAkEjpP0QfAXma2hplZjGlygjEZ\nq5b6MsUxADgpXnG1GbAl8E4hYjKzQwnVl93dfVGlWAsek7u/7+4bufvm7r4Z4YfIrh56XRgAnJjE\neQKeAw4EiJ/51dz924RjmmZmnWNMXQhtDVDb9y7XLes5bqU/lPAPPg34U4Jx7AssI1xJNQ4YG2Nb\nl9BlyAeEqxlaJRBbZ1ZexVQM8exMSO7jCb+uWiYdF+HLbhIwgdAQ3DSJmIC+wBfAIkKbSA9gnUxx\nEOqPPyJcFHFIAWOaRuiCf2x83JN0TJWWTydexZTweWoCPAJMBN4FOhdBTLsBb8fvqbcIibTWMelG\nORERSauYq5hERCRBShAiIpKWEoSIiKSlBCEiImkpQYiISFpKECIikpYSRAkxs6NiV8cdql+7yv2c\nYWZ35mv9uM3V1a/VMJlZZzPbO0/7rvF7VYtjDDOzjnH6hdTuwLPYNm188QauV2MfXsfHfry2yTaO\nbI4hNacEUVpOAl4ATs7Bvmp6A0xN1+9Zw/UbkjJCdx/5UrCbm9z9N+7+Q003SzOvY9idd3T3p9z9\nd+4+tS6h1WFbiZQgSoSZNQc6ARcQEkXF/M7xl1TFID2PpCzrFueNNrM7zGxgmv2ub2b9zezt+Mj0\nxdU2HucDM/tzyvanxu3Gmtm9FgYxuglYM857xMz+YGYXxfX/aWavxekDzOzROH2ImY00s3fN7InY\nCyxm1tHMyuNreCml36JhZnZzPPZUM9s3zWvrHLd9zsw+iuufZmEglfdilwPE7lxeszBAzqsWulLH\nQq+095jZW3H7MjP7n5lNNrMHU45zcIbYZ5hZLzMbE4/XwczaAecCl8bzs2+lmPeI+xpjZm+a2VZx\n/hkWBu95Kb4Ht6Rs0yPOG0W46/8Xqtnvc5Xf23hOppjZo/H1Pmlma6TZ7wyLg/ek+SxYNvGZ2QaE\nO5L3iNtubquWUtKe30r7qPYcSC3k4xZwPfJyW/0pwH1x+nXiLfSErja+A1oT+mQZSfh1ujrh9vu2\nKbflV3TJcQbwrzj9GLBPnN6U0N9U5WOfQejYqxWwBqFrgY6EQZMGAI3jencDp8XpH1K27wQ8Eaff\nIHSV3hj4M3AOsF58TWvGda4EriV0ZTACWC/OPwF4IE4PA26N04cBr6aJuzMwl9CF9mrxNfSKyy4G\n/hGnB6TE3QN4Nk4/BPSN090JY0tsF5+/C+yUKfY4PQM4P06fB/wnTl8HXJ7hfV6LlYP1dAH6p7wH\nH8XlqwOfELpr3ojQLca68Xy9WfHe1mC/6d7bdsByYK+43gMVMcdz3zFOT4/HTvtZqEF8K7qMST1G\nNee3Yp2sjqFHzR9NkFJxMmEMCAjdCp9C6G8F4B13nw1gZuMJPV8uAD5295lxnX6EL+PKDgK2rfi1\nB6xlZs3cfWGl9V519+/jMZ4mjGa1jND3y+i4/RrAl3H91A7ExgC7mVkLQr8xYwi9TO4PXATsRRjx\nakTcT1NCPzJbAzsAr8b5jQh9z1R4JmX/7dK8NoDRHjp1w8w+Al6J8ycSqnoA9gaOjtOPEEZ5qzAw\nZf3Z7j45Pp9EOM+bpol9ZMr2z6bEeDTVawX0ib/wHVb5H33NQzfzmNkkwmvegDBq2Nw4/wlgqxru\nN/W9fYbw3j4PzHT3UXGdRwnv1T8q7bfife5C+LJO/Sx8RfhxkE18maT7bIystE5djyEZKEGUADNb\nh9Br5A5m5oRf387K0bVSe9xcxsr3taqxIlbsntBF8JJq1kut07WU5/9z92uq3NB9qZl9Qui1dASh\n07wDgC3cfaqZbQkMdvdTVwnMbAfgfXfPVGVQ8bpTX3OmdSD8Il6UMl2xTVX11anrV95Xk/j3F7HX\nMMZUfyX0zntMrI4almZfqceH7N7nqvab7dgY6eZXzDPg4cqfBTM7Msv4MjGqPr+p60mOqQ2iNBwP\n9HH3zTx0edwOmGFm+1WxzQfAZmZW0S/9iRnWGwxcUvHEzHbOsN7BZtbKwuAtRxG+6IcCx8U6ZMxs\nHTOr6HN+sYUxNCoMB/5AqGJ6k1APX1ECGgXsa2ZbxP00i790PwA2MLO94vwmZrZdhvjq8gUxkpUN\n/6fFWLM9RqbYqzIfyHTlz9qs7Ke/RzX7gdBz56/juW9K+KzUdL/p3lsI7U6d4vQppD8vFefkNX75\nWWhbg/gyyeb81vUYkoESRGk4kZVVFRWeJv3VTA7g7j8D5wOvmNloQv35vDTrXwLsbqER9X3g9xli\neIdQpTMeeMrdx7r7FEJbwWAze4+QbFrH9f8DTLCVjebDCXXFb8Uqn58IyQIPY/meCfSL+xkJbB1L\nNccBt8Sqs3GE6qAVr7Py665GpnUuBnrEY5zKyoRZ1TEqznPa2Ks53kDgaEvTSA3cCtxsZmOo+v+z\n4vhfAr0IX6TDCWNdpFPVfn/x3sb5HwAXmNlkQhXVfWleV0Uc6T4LG9Ugvkyvr9rzW4djSDXU3Xc9\nZmbN3X1BnL4b+NBXHfBIGjgzOwPYzd0vrjS/HfCCu++YTGRSDFSCqN/OMbNxsUFzbeDfSQckJUW/\nHhs4lSBERCQtlSBERCQtJQgREUlLCUJERNJSghARkbSUIEREJC0lCBERSev/A5ZtX5KDKuopAAAA\nAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mb=9.27e-24 # one Bohr magneton in Am^2\n", "B=40e-6 # field in tesla\n", "thetas=np.arange(0,180,1) # makes an array of thetas from 0 to 180\n", "Es=-mb*B*np.cos(np.radians(thetas)) # makes an array of energies\n", "plt.plot(thetas,Es) # make a nice plot\n", "plt.title(\"Magnetostatic energy versus angle\")\n", "plt.xlabel(\"Angle between moment and applied field\")\n", "plt.ylabel(\"Magnetostatic in Joules\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem 3.1b" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For the rest of the problem we need to know the thermal energy (Bolzmann's constant $k=1.38 x 10^{-23}$ J/K and the absolute temperature $T=300$ Kelvin. " ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Thermal energy at room temperature is: 4.14e-21\n" ] } ], "source": [ "k=1.38e-23\n", "T=300\n", "print 'Thermal energy at room temperature is: ',k*T" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Which is a LOT bigger than the magnetostatic energy. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem 3.2a" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We must find the induced moment $m$ knowing that the magnetetization (moment per unit volume) is $M=\\chi_p H$ for a paramagnetic substance. For Fayalite $\\chi_p$ = = 4.4 x 10$^{-4}$ (cgs; per unit volume). " ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.0088\n" ] } ], "source": [ "chi_p=4.4e-4 # susceptibility of fayalite in cgs per volume\n", "B = 10. # applied field in Oersteds\n", "vol=2. # volume in cm^3\n", "M=chi_p*B # magnetization\n", "m=M*vol # moment in emu\n", "print m\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem 3.2b" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we have to convert everything to SI. \n", "\n", "$\\chi_{SI} = 4\\pi\\chi_{cgs}$\n", "\n", "$H_{SI}={{H_{cgs}}\\over {4\\pi 10^{-3}}}$\n", "\n", "$vol_{SI}={{vol_{cgs}}*{10^{-6}}}$ \n" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Magnetization in A/m is: 4.4\n", "magnetic moment in Am^2 is: 8.8e-06\n" ] } ], "source": [ "chi_SI=chi_p*4.*np.pi\n", "H_SI = B/(np.pi*4.*1e-3)\n", "vol_SI=vol*1e-6\n", "M_SI=H_SI*chi_SI\n", "m_SI=M_SI*vol_SI\n", "print 'Magnetization in A/m is: ',M_SI\n", "print 'magnetic moment in Am^2 is: ',m_SI" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we have to convert the $m$ in Am$^2$ to emu cm$^{-3}$ by muliplying by 10$^3$." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "converted to cgs, m is: 0.0088\n" ] } ], "source": [ "m_cgs=m_SI*1e3\n", "print 'converted to cgs, m is: ',m_cgs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem 3.3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The governing equation here is the Curie Law of paramagnetic susceptibility (Equation 3.6 in the text):\n", "$$\n", "\\chi_p={M\\over H} = {{Nm^2\\mu_o}\\over{3kv}}\\cdot {1\\over T}.\n", "$$\n", "\n", "which shows that $\\chi_p$ is inversely related to temperature. We were given $\\chi_p$ at 273K, so at 773K, we have:\n", "$$\n", "\\chi_{773} = {\\chi_{273}} { 273\\over{773}} = { 4.4 \\times 10^{-4} } { 273\\over{773}} = 1.6 \\times 10^{-4} { {\\hbox {emu}} \\over {\\hbox {cm}^3 \\hbox{oe}}}\n", "$$\n", "\n", "So if $H$ = 100 oe at T= 773K: \n", "\n", "$$\n", "M = \\chi_{773} H = 1.6 \\times 10^{-2} { {\\hbox {emu}} \\over {\\hbox {cm}^3 }}\n", "$$\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem 3.4" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here again we use the Curie Law of Paramagnetism:\n", "$$\n", "\\chi_p = {N\\over v} m_b^2 { {\\mu_o}\\over {3kT}} .\n", "$$\n", "\n", "${N\\over v}$ is the number of atomic magnetic moments per unit volume. The number of atoms was given to us as 4 x 10$^{28}$ per m$^3$ and ${\\bf m_b}$ is their moment (the Bohr magneton). Looking up from Figure 3.4 in the text we find that there are 5 unpaired spins for Mn$^{2+}$. So ${N\\over v}$ is 20 x 10$^{28}$. The other parameters are given in the text as $\\mu_o = 4 \\pi$ x 10$^{-7}$ Hm$^{-1}$, $m_b$ = 9.27 x 10$^{-24}$ Am$^2$ and $k$ = 1.381 x 10$^{-23}$ JK$^{-1}$. So, $\\chi_p \\sim 1.7$ x 10$^{-3}$. \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem 3.5" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For this problem, we need to find the data file curie\\_example.dat that is in the curie folder in the Datafiles folder that comes with PmagPy. Copy it into the same folder that has this notebook. Read it in and make a simple X,Y plot of the data. " ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAETCAYAAADDIPqYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYFNW5x/HvyyqILCKCsgmKIipBiCii0kI0IG7XFbe4\nxBtDQIyaa9RowGv0xuwajV7Uq6JxiTsSjRq1XXAJAqMDiBuIiDJKUNyQbd77x6nRZuyeaXqmu7p7\nfp/nqWeqqqur3hPMvHOWOsfcHRERkXSaxR2AiIgULyUJERHJSElCREQyUpIQEZGMlCRERCQjJQkR\nEcmoIEnCzJqZ2Rwzm57msxFm9kn0+Rwzu6gQMYmISP1aFOg5ZwELgPYZPn/G3Q8tUCwiIpKlvNck\nzKwHcBBwQ12X5TsOERHZdIVobvoj8F9AXa92DzOzCjP7u5kNKEBMIiKShbwmCTMbC1S5ewWhtpCu\nxjAb6OXug4CrgQfyGZOIiGTP8jl3k5ldDpwIrAfaAFsA97n7D+r4zmJgiLuvrHVek0yJiOTA3XNu\n0s9rTcLdL3T3Xu7eFxgHPFk7QZhZ15T9oYTEtZI03L1st8mTJ8ceg8qn8jW1sjWF8jVUoUY3bcTM\nzgDc3acCR5nZeGAdsBo4No6YRETk2wqWJNz9aeDpaP9/U85fA1xTqDhERCR7euO6SCQSibhDyCuV\nr3SVc9mg/MvXUHntuG5MZualEquISLEwM7xYO65FRKS0KUmIiEhGShIiIpKRkoSIiGSkJCEiIhkp\nSYiISEZKEiIikpGShIiIZKQkISIiGSlJiIhIRkoSIiKSkZKEiIhkpCQhIiIZKUmIiEhGBVl0yMya\nAS8D77n7oWk+vwoYA3wBnOLuFfmOacMGOP98WLYM2rSBffeFo46Cdu3y/WQRkdJRqJXpzgIWAO1r\nf2BmY4Dt3b2fme0JXAfsle+AmjeHbbaBQYPg88/h/vvhvPPg7LPh5JNhs81g8eKwLVoEs2bB449D\n374huQA8+ihUVkLnznDAAXDIIdCv38bP+eqrcC8RkVKU90WHzKwHcBNwGXBO7ZqEmV0HPOXud0XH\nrwEJd6+qdV3eFx1asAAuuwweewzWrYPttgtJoU8fGDgQvvc9mDMHrroKWreGAw+EPfaA5cvhkUdg\nxgxo3x7694eqKpg/H1avhm23DQnk+ONhr72gWbPw+bPPwpo1MHYsdOy4cRzXXANdu8J//mdIZiIi\nuWjookOFSBJ3ExJEB+DcNEniIeB/3P356PifwHnuPqfWdUW/Ml11NVRUhNrH1lvDLrtAp07w+utw\n773w17/CO++EBAMwfDi0aBFqKddeC4ceCtOnww9/CD/9aWgKu/NOOPZY2H57+OgjePPNkGA6dIC9\n94Z99glJ7P33w30WLIBu3eCII0JiE5GmraiThJmNBca4+0QzSxCSxCG1rsk6SUyePPnr40QiUZJr\n037+eWiC6twZLPpne/rpkBg6doQPPoD77oM99wyfLV8ON90EK1aE7/TrF2oWK1aEmsgLL8DSpaHW\nMWQI7LprOL79dth5Z7j4Ythvv3Cv6uqQaDp2/CZRiUh5SSaTJJPJr48vueSSok4SlwMnAuuBNsAW\nwH3u/oOUa2o3Ny0ERsTR3BSnL76A558PyaH9t3puNt3atXDrrXD55aF5q2PHUKNp3TokqgEDQk2m\nbVtYtSqc23LLUAOq2bbcMjSV9ekT7iEipaeoaxIbPchsBOmbmw4CJrj7WDPbC/iTu3+r47rck0S+\nbNgACxfCp5/CTjuFX/xr1sDLL4dayLp1oelq883h44/hww9Dc1ZVFXzySaiVrFgRaiU77RSaz/r1\ng8MPh9694y6diNSnJJOEmZ0BuLtPjT67GhhNGAJ7au2mpugaJYmYfPZZ6Ot4442QOF55BR54IIwM\nGzECttgiNGXtsksYSty2bdwRi0iNkkkSDaUkUVy++goeegjmzoUvvwT3sF9REUZwbbFF6ExfujTU\nXgYOhMGDoWfP0H/SrVtoxmrZMu6SiJQ3JQkpKh9/DDNnhqG/22wTksK//x1qH3PnhsSxfHnooF+x\nAhKJMJR48OAwdLhTp7hLIFJelCSkZH30ETzxRHhJsbIy9J20aRNGaA0ZEob9du8etp49Yaut4o5Y\npPQoSUjZcA81jcpKmD07vFOybFnYliwJyeLgg+HII8NLjJbzf/YiTYeShDQJ1dVhRNZDD4UXDJs3\nh5NOghNP1CgrkbooSUiT4w4vvhjeA/nb38Lw3HHj4Oijw/sdIvINJQlp0tauDXNt3XlnqGV07x46\nwfv1gx12CP0aO+8c3gURaYqUJEQi69aFSRUrKuDtt+Gtt8K2cCHsuGMYSZVIhOG4nTqFYbrq15By\nV5AkYWabAz0BJ6wJ8UWuD8yVkoTkau3aMPlhMglPPRWSxqpVYZjuyJFw6aXfzJUlUm7yliTMrB3w\nI2Ac0Bn4EDCgK7ACuB243t0/z/XhmxSokoQ0sq++ChMhXnABTJoUfmqOKik3+UwSTwB3AA+lmWyv\nK3AocKy7fy/Xh28KJQnJl2XL4JhjwnsY06ap/0LKi/okRBrB2rVwzjmhE/zGG8McVCLlIO9JwsyG\nAxXu/oWZnQgMBq509yW5PjQXShJSCHfeCRdeCK1awbBhoc/i0ENVu5DSVYgk8SrwHWAgcDNwA3CM\nu4/I9aG5UJKQQtmwIbz1/fzzoWaRTMJhh8Fpp8HQoWHqEJFSUYgkMcfdB5vZL4Fl7n5jzblcH5oL\nJQmJy0cfhRf3brsNXnsNevUKo6F+8YuwxoZIMWtokshmLMdnZnYBYYW5v5tZM0ATPEuT0aVL6K+Y\nMycs3nT//WHtjH32gSuvDG+Ai5SrbGoS3YDjgVnu/qyZ9QIS7j6tEAGmxKGahBSVRYvCdCBdu4Z1\nyDVLrRSjQtQkznb3P7j7swDu/i6wS5bBtTazl8xsrpnNj9a8rn3NCDP7xMzmRNtFm1YEkXj07QvP\nPRem/dh999B3IVJusu6TqHXuVXcfmNUDzNq6+5dm1hyYSVjCdGbK52nXvk5zH9UkpGj94x9w6qnw\nox/BxRdDixZxRyQS5K0mYWbjzawS2MnMXk3ZFgOV2T7A3b+MdltHz/s43eM2JWiRYjN6dOizmDkz\nDJtdujTuiEQaR13NTbcDhwDTo5812xB3PyHbB5hZMzObCywHku6+IM1lw8yswsz+bmYDsg9fpHhs\ns00YMjt6NOy9d5hcUKTU1VUpdnd/x8wm1P7AzLZ095XZPMDdq4Hdzaw98JiZjXD3p1MumQ30ipqk\nxgAPADumu9eUKVO+3k8kEiQSiWxCECmYZs3Cy3hduoQaRTIZ+i5ECiWZTJJsxA6yuuZumuHuB0fN\nS87GTULu7pv8n76ZXQx86e6/r+OaxYTayspa59UnISXl2mvhN78JiUKr50lcGtonkbEm4e4HRz/7\n5HpzM9sKWOfuq8ysDXAAcEmta7rWTCBoZkMJiSurWopIMRs/PswJNXIkPPywXryT0pTVGAwz6w70\nTr3e3Z/J4qvbALeYmRH6P2519yfM7IxwC58KHGVm44F1wGrg2E0sg0jROuussLjRvvuGiQMPOSTu\niEQ2TTZDYK8g/OJeAGyITnt9Q1Ybm5qbpJS9+GKYjvyEE8IiRxoiK4VSiLmbXgcGuvuaXB/SGJQk\npNR99BGcdFJY7Oihh0INQyTfCvHG9SI0V5NIg3XpEvom+vcPzU5r18YdkUj9sqlJ3EuYKvwJ4Ova\nhLtPym9o34pDNQkpC9XVIUkMGQL//d9xRyPlrhDNTSenO+/ut+T60FwoSUg5+eADGDQIHn00/BTJ\nFy1fKlKibrghjHiaOTO8hCeSD4WoSdS8TLeRXF6mawglCSk31dUwfDj88Idw+ulxRyPlqhBJonPK\n4WbA0cCW7v7LXB+aCyUJKUcVFXDggbBggdajkPyIpbnJzGa7+5BcH5oLJQkpVz/7GcybBzNm6P0J\naXyFqEmkriXRDPguMN7dv5PrQ3OhJCHlav16GDsWdtwR/vznuKORclOIJPFUyuF6YDHwe3d/PdeH\n5kJJQsrZqlVhevHx42HixLijkXKi0U0iZWLRopAopk+HoUPjjkbKhZKESBn5v/+Dm26CZ54B03qN\n0ggKMS2HiBTIySeHpqcZM+KORCRQkhApIs2bh5Xtfp9xWS6Rwqo3SZjZbDObYGadChGQSFN35JGh\nf2L27LgjEcmuJnEssC0wy8zuNLPvR4sIiUgetGwJkybBH/4QdyQim9BxbWbNgIOBawmLD90EXFnX\nUqNm1hp4BmgVbQ+6+4VprrsKGAN8AZzi7hVprlHHtTQZq1ZBnz5QWQndu8cdjZSygnRcm9lA4PfA\nb4F7CVNzfAo8Wdf3ooWK9nf33YGBwEgzG17r3mOA7d29H3AGcN2mFkKk3HToAMcfD9fp/w0Ss6z6\nJIA/ArMIK9RNcveX3P33hAWJ6uTuX0a7raPnfVzrksOAadG1LwEdzKxr9kUQKU8TJ8LUqWElO5G4\n1Jkkoiame919lLvfXnsJU3c/or4HmFkzM5sLLAeS7r6g1iXdgaUpx8uicyJNWv/+Ya2Jv/0t7kik\nKatzOjF3rzazI4DLc32Au1cDu5tZe+AxMxvh7k/ncq8pU6Z8vZ9IJEgkErmGJVISzjwTLrkkrI2t\n4SKSjWQySTKZbLT7ZTN306+BFcBdhI5lAOrqsK7jXhcDX0ZNVTXnrgOecve7ouOFwAh3r6r1XXVc\nS5OzYQPstFNYnGjEiLijkVJUiI7rY4EJhFFKs6Pt5SyD28rMOkT7bYADgNojl6YDP4iu2Qv4pHaC\nEGmqmjeHKVPg/PNBfyNJHPI6d5OZ7QbcAhghId3q7r8zszMAd/ep0XVXA6MJNZVT3X1OmnupJiFN\nUnU1DBkCF10UXrQT2RQFmeDPzHYFBhBWpgPA3afl+tBcKElIU/b44zBhQljBTgsTyabIe3OTmU0G\n/hxt+wO/AQ7N9YEisukOOAB69IBpBf3TTCS7jutK4DvAXHf/TvQOw23ufkAhAkyJQzUJadJmzoQT\nToC33lJtQrJXiI7r1dEw1vXRMNYPgZ65PlBEcjN8OGyzDTz2WNyRSFOSTZJ42cw6AtcTRjbNAV7I\na1QiktYpp8DNN8cdhTQldTY3RbO99nD3pdHxdkB7d3+1INFtHIuam6TJ++QT2G47WLwYOmnyfslC\nXpubot/KD6ccvxNHghCRoGNHGDkyrIMtUgjZNDfNMbM98h6JiGTlyCPhnnvijkKaimxGNy0EdgCW\nEF52M0IlY2D+w9soDjU3iRDWmujZE957D9q3jzsaKXYNbW7KZiDd93O9uYg0vg4dYL/9YMaMsOaE\nSD5l09z0K3dfkroBv8p3YCKS2VFHqclJCiOb5qY57j445bg5UOnuA/IdXK041NwkElm5MixvumwZ\ntGsXdzRSzPI2usnMLjCzz4CBZvZptH1GeJnuwVwfKCINt+WWMGwYPPBA3JFIucumJvE/7n5BgeKp\nKw7VJERSPPIInHcevPIKNMtqtXppivJZk+gf7d5tZoNrb7k+UEQax+jR0Lq1ahOSXxlrEmY21d1/\nZGZPpfnY3X1kfkP7VjyqSYjU8sgj8NOfQmUltGoVdzRSjAqynkTONzfrAUwDugLVwPXuflWta0YQ\n+jgWRafuc/dvjZ5SkhBJb/RoGDMGzjor7kikGOU9SZjZZsBPgH0AB54FrnP3r7IIrhvQzd0rzKwd\nYYLAw9x9Yco1I4Bz3b3ONSqUJETSmz8f9t8fFi4MHdoiqQoxVfg0YBfCokNXR/u3ZnNzd1/u7hXR\n/ufAa0D3NJfmXACRpm6XXcJ7E5deGnckUo6yqUksqP1ORLpz9T4ozCCbBHaNEkbN+RHAvcB7wDLg\nv9x9QZrvqyYhksHy5bDzzmFBos6d445GikkhahJzzGyvlAfuCby8KQ+JmpruAc5KTRCR2UAvdx9E\nqKlorIbIJurWDY44Aq69Nu5IpNzUNbqpktAH0RLYCXg3Ou4NLMy2JmFmLYAZwCPufmUW1y8Ghrj7\nylrnffLkyV8fJxIJEolENiGINAnz5sGBB8K772p506YsmUySTCa/Pr7kkkvy03FtZr3r+mI0h1P9\nDzCbBqxw93MyfN7V3aui/aHA39x9uzTXqblJpB7DhsFFF8HYsXFHIsUir6Obonma5rt7/4wX1R3c\ncOAZoKZW4sCFhNqIu/tUM5sAjAfWAauBs939pTT3UpIQqcfUqfDoo3DvvXFHIsWiEENgHwTOdPd3\nc31IY1CSEKnfqlXQq1dY3lTDYQUK03HdCZhvZk+Y2fSaLdcHikj+dOgQ+iVUk5DGkk1NYkS68+7+\ndF4iyhyHahIiWbjvPrj6anjyybgjkWJQ1NNyNCYlCZHsfPUVbLNNeBN7223jjkbilvfmJjPby8xm\nmdnnZrbWzDaY2ae5PlBE8muzzeDww+Guu+KORMpBNn0SVwPHAW8CbYDTgWvyGZSINMxxx8Edd8Qd\nhZSDrJYqcfe3gObuvsHdbwJG5zcsEWmIkSPDS3VvvRV3JFLqskkSX5pZK6DCzH5jZmdn+T0RiUmL\nFnD00apNSMNl88v+pOi6icAXQE/gyHwGJSINV9PkpPEe0hAa3SRSptyhb98wJHb33eOORuKSzzWu\n/25mR5tZ2zSftTWzY83s77k+WETyywxOOQWuvz7uSKSU1TXBXxdCE9PRwHrgA8LiQNsAzYG7gL+4\n+0cFCVQ1CZFN9v77sOuusGQJbLFF3NFIHAryMp2ZdSVMygewpGbW1kJSkhDJzVFHwahRMH583JFI\nHPTGtYjU6ckn4ayz4NVXQxOUNC2FmOBPRErY/vvDunUwc2bckUgpUpIQKXNmoanpL3+JOxIpRWpu\nEmkCPvkE+vSB11+HrbeOOxoppEJM8DfczB43szfMbJGZLTazRVkG18PMnjSz+WZWaWaTMlx3lZm9\naWYVZjZoUwshInXr2BGOPBJuvDHuSKTUZLOexELgbGA2sKHmvLv/u96bm3UDurl7hZm1i+5xmLsv\nTLlmDDDR3cea2Z7Ale6+V5p7qSYh0gBz5sARR8Dbb0Pz5nFHI4VSiI7rVe7+iLt/6O7/rtmyubm7\nL3f3imj/c+A1oHutyw4DpkXXvAR0iIbcikgjGjwYunSBJ56IOxIpJdkkiafM7LdmNszMBtdsm/og\nM9sOGAS8VOuj7sDSlONlfDuRiEgjOP54uPPOuKOQUtIii2v2jH5+N+WcAyOzfUjU1HQPcFZUoxCR\nGBxzDFx6KVx7LbRuHXc0UgrqTRLuvn9DHmBmLQgJ4lZ3fzDNJcsIM8vW6BGd+5YpU6Z8vZ9IJEgk\nEg0JTaTJ6d4dBg6ERx4Jq9dJ+UkmkySTyUa7XzYd1x2AycB+0amngf9291VZPcBsGrDC3c/J8PlB\nwISo43ov4E/quBbJn//9X3jqKTU7NRV5n5bDzO4F5gG3RKdOAr7j7kdkEdxw4BmgktBE5cCFhHmg\n3N2nRtddTVjt7gvgVHefk+ZeShIijWDFCth+e1i2DNq1izsaybdCJIkKdx9U37l8U5IQaTwHHQQn\nnhg6sqW8FWII7Goz2yflgcOB1bk+UETid/zxWtpUspNNTWIQoampA2E9iZXAKe7+Sv7D2ygO1SRE\nGslnn0HPnuHFus6d445G8qlgU4WbWXsAd/8014c1hJKESOMaNy7MEHvGGXFHIvmUtyRhZie6+21m\nlnZUkrv/IdeH5kJJQqRxTZ8Ov/sdPPNM3JFIPuWzT2Lz6OcWaTaNiRApcaNHw4IFsCir6Tqlqcqm\nT2K4u8+s71y+qSYh0vjOPRdatoRf/zruSCRfCjEEdo67D67vXL4pSYg0vjffhOHDYelSTdNRrhqa\nJDJOy2Fmw4C9gS61+iXaA5poWKQM9OsHgwbBPffACSfEHY0Uo7r6JFoR+h5asHF/xKfAUfkPTUQK\nQUubSl2yaW7q7e5LChRPXXGouUkkD9avh+22gxkzQq1Cyksh+iS6AOcBuwCb1Zx396ynCm8MShIi\n+TNlSpjT6eqr445EGlshpuX4K7AQ6ANcArwDzMr1gSJSfE47LUzTsVoT7kgt2SSJzu5+I7DO3Z92\n99PYhAWHRKT49eoFQ4fCvffGHYkUm2ySxLro5wdmNtbMdge2zGNMIhKD00+HG26IOwopNtn0SRwM\nPEtYPe7PhCGwl7j79PyHt1Ec6pMQyaO1a6FHD3jxRejbN+5opLEUouO6p7svrXWum7svz/WhuVCS\nEMm/SZNgq63gl7+MOxJpLIXouF5sZneYWduUcw9nc3Mzu9HMqszs1QyfjzCzT8xsTrRdlM19RSQ/\nfvADmDYN9PeY1MgmSVQSmpueM7Pto3PZZqWbgO/Xc80z7j442n6V5X1FJA+GDIFWreCFF+KORIpF\nNknC3f0vwJnAQ2Z2CGGt6my++BzwcT2X5VwNEpHGZfZNbUIEsksSBhDN+jqK8GJd/0aMYZiZVZjZ\n381sQCPeV0RycMIJcPfd8NVXcUcixSDjBH8pDqrZcfcPzGx/wsR/jWE20MvdvzSzMcADwI6ZLp4y\nZcrX+4lEgkQi0UhhiEiNnj1h993DNB1HaZa2kpNMJkkmk412v7yvTGdmvYGH3H1gFtcuBoa4+8o0\nn2l0k0iB3HJLeLFuekEHuks+lMLKdEaGfgcz65qyP5SQtL6VIESksI44Iixr+uGHcUciccvrynRm\ndjuQADoDVcBkwhTk7u5TzWwCMJ7wVvdq4Gx3fynDvVSTECmgk06CPfYI705I6dLKdCKSF48/Dhde\nCLM0nWdJ08p0IpIXI0fC++/DggUwQOMOmyytTCciaTVvDieeCLfeGnckEqesV6Yzs7bu/mWB4koX\nh5qbRAps3jwYMwbeeSckDSk9hZi7aVszW0BYeAgz+46ZaUVckSZg112hSxdoxGH3UmKySRJ/Isy/\n9G8Ad38F2C+fQYlI8dA0HU1bNkmC2lOFAxvyEIuIFKHjjoMHH4TPP487EolDNkliqZntDbiZtTSz\nnwGv5TkuESkSXbvCPvvA/ffHHYnEIZsk8WNgAtAdWAYMio5FpIlQk1PTVe/opmKh0U0i8Vm9Grp3\nh1dfDUucSukoxBvXXYD/BLYj5eU7dz8t14fmQklCJF4/+hHssAOcd17ckcimKESSeJ6wMt1sUjqs\n3f3eXB+aCyUJkXg9+yz8+Mfh3QnTUmEloxBJosLdB+X6gMaiJCESr+rqUJO45x4YXNCZ26QhCvEy\n3QwzO6j+y0SknDVrFmaGVQd205JNTeIzwtoSawhTehthqu/2+Q9vozhUkxCJ2VtvwfDh8N570LJl\n3NFINvJek3D3Ldy9mbu3cff20XFBE4SIFIcddgjbP/4RdyRSKNnUJNK1Pq4Clrj7+rxElT4O1SRE\nisCNN4YX62bMiDsSyUYhOq5fBAYDldGp3YB5QAdgvLs/Vsd3bwQOBqoyrXFtZlcBY4AvgFPcvSLD\ndUoSIkVg9Wro3RtmzoR+/eKORupTiI7r94Hd3X2Iuw8hvHG9CDgA+E09372JMDlgWmY2Btje3fsB\nZwDXZRW1iMSmTRs4/XS4+uq4I5FCyCZJ7Oju82sO3H0B0N/dF9X3RXd/Dvi4jksOA6ZF174EdDCz\nrlnEJCIxGj8+LEb06adxRyL5lk2SmG9m15rZiGj7C7DAzFoTRjs1RHcgdYbZZdE5ESliPXvCAQfA\nLbfEHYnkW8Y1rlOcAvwE+Gl0PBP4GSFB7J+fsNKbMmXK1/uJRIJEIlHIx4tIijPPhNNOgwkTwjsU\nUhySySTJRlwlKu8T/JlZb+ChdB3XZnYd8JS73xUdLwRGuHtVmmvVcS1SRNxhyBC47LKwxKkUp7x3\nXJtZPzO7x8wWmNmimm1TYoy2dKYDP4iesxfwSboEISLFxwwmTYKrroo7EsmnbIbAPgdMBv4IHAKc\nCjRz91/We3Oz24EE0Bmoiu7TivDG9tTomquB0YQhsKe6+5wM91JNQqTI1EwhPm8ebLtt3NFIOoV4\nT2K2uw8xs0p33y31XK4PzYWShEhx+uEPYcAAOPfcuCORdArxnsQaM2sGvGlmE83sP4B2uT5QRMrL\niSeG4bBSnrJJEmcBbYFJwBDgJODkfAYlIqVjxAhYuRIqK+u/VkqPli8VkQa74IKw3sQVV8QdidSW\ntz4JM5te1xfd/dBcH5oLJQmR4jV/Pnz/+7BkCTRvHnc0kqqhSaKul+mGEd6GvgN4iczDWEWkidtl\nF9h6a0gmYdSouKORxlRXn0Q34EJgV+BKwoR+K9z9aXd/uhDBiUjpOPFEuO22uKOQxpZVn0Q0T9Nx\nwG+BS9y94PM/qrlJpLh98EEYCrtsGbRtG3c0UiOvQ2DNrLWZHQHcBkwArgLuz/VhIlK+ttkmjHS6\n8ca4I5HGVFfH9TRCU9PDwJ3uPq+QgaWJRzUJkSI3ezYcdlhYC3uzzeKORiC/o5uqCVNlAKReZIRp\nNQq6zrWShEhpOOSQMNJp4sS4IxEowLQcxUJJQqQ0vPwyHH44vP02tG4ddzRSiGk5RESy9t3vwqBB\n6psoF6pJiEijmzULjjgCFi2Cli3jjqZpU01CRIrOHntA375wv8ZCljwlCRHJi4kT4Zpr4o5CGkpJ\nQkTy4vDDw1DYV1+NOxJpiLwnCTMbbWYLzewNM/t5ms9HmNknZjYn2i7Kd0wikn8tW8KPf6zaRKnL\na8d1tFjRG8Ao4H1gFjDO3RemXDMCOLe+WWXVcS1SepYvh513Dh3YnTrFHU3TVOwd10OBN919ibuv\nA+4EDktznWaYFSlD3brBMcfAlClxRyK5yneS6E6YbrzGe9G52oaZWYWZ/d3MBuQ5JhEpoMsugzvu\ngLlz445EclHXehKFMhvo5e5fmtkY4AFgx3QXTkn5cySRSJBIJAoRn4g0wFZbwe9+ByedFN6faNMm\n7ojKWzKZJJlMNtr98t0nsRcwxd1HR8fnE+Z9yrjIoZktBoa4+8pa59UnIVKi3GHcuND8dOWVcUfT\ntBR7n8QsYAcz621mrYBxwEbLoppZ15T9oYTEtRIRKRtmcN114eW6f/wj7mhkU+S1ucndN5jZROAx\nQkK60d0Q/QmFAAALbElEQVRfM7Mzwsc+FTjKzMYD64DVwLH5jElE4tGpE9x8M5x8MsybBx06xB2R\nZENzN4lIQf34x7B+PdxwQ9yRNA2aKlxESsqnn8Juu8H118OBB8YdTfkr9j4JEZGNtG8fEsSpp8I7\n78QdjdRHSUJECu7AA+H888MKdh9+GHc0UpdieE9CRJqgM8+EFStCwnjqKU3bUazUJyEisXGHc86B\nV16Bxx+H5s3jjqj8qE9CREqWWXgbu1kzmDw57mgkHdUkRCR2H34IQ4aEF+7Gjo07mvKiIbAiUhZm\nzgwLFZ10ElRVQUUF7L8/XHEFbL553NGVLjU3iUhZGD4cnn0WOneGUaNg2jT4+GMYPTq8WyHxUE1C\nRIpWdXUYBfWvf8HDD0OXLnFHVHrU3CQiZc0dLr44LIO6zz7Qpw/06gW9e3+zbb116ASXb1OSEJEm\noaoKnnsO3n03bEuWfLM1awbHHgvjx8MALVu2ESUJEWnyFi0KM8xOnRrW1N5pJ1izBtatC/vf+x4M\nHdo038NQkhARiaxZE9arWLYMNtssJIV58+DRR+H992G//ULzVLduoX+jT5+QPMp59JSShIhIFpYu\nheefDz+rqsK7GW++Gd723mUX2GMPaNcuXFtdDS1awMCBcMgh35wvRUWfJMxsNPAnvll06FtLl5rZ\nVcAY4AvgFHevSHONkoSINLovv4TZs8O2Zk1IEM2bh/2XXoIXXoAJE+Dcc8NCSe+9B/fcExLN4MFh\n7qkOHcL1K1bAllsW1zreRZ0kzKwZ8AYwCnifsJzpOHdfmHLNGGCiu481sz2BK919rzT3KuskkUwm\nSSQScYeRNypf6SrnskH95Vu0CC69NCy92qULrFwZXvrbbjt48UV48smQWCAkiFWroH9/2Hff0JzV\nuXNo+qrZWreGzz8PU6bvuSe0bJnf8jU0SeR7FtihwJvuvgTAzO4EDgMWplxzGDANwN1fMrMOZtbV\n3avyHFtRaer/Ryx15Vy+ci4b1F++vn3hppvCHFNVVaEjPLUD3D3UIlq3DsNw16wJtZKZM2HxYnj5\nZfjqq7CtWRN+br55aO769FO4/HI4+mhYuxbmzg01m/32C81dxSDfYXQHlqYcv0dIHHVdsyw616SS\nhIgUt86dw1abWagh1GjdGvbeO2z1eeIJOO+80JT18cew445hOO9nn8GvfhVqLLNmwYwZoeN9n33g\n0ENDAqlJRGvWQI8eIXn17w/duzfuOyNFkqtERJqeUaNCEnjzzfDLvV27UDP55z/hwgth3Ljw3sch\nh8CwYWE69XPPDd8dODA0abVrB5WVcPfd8PrrIcHsuGMYxXX//Q2PMd99EnsBU9x9dHR8PuCpnddm\ndh3wlLvfFR0vBEbUbm4ys/LtkBARyaNi7pOYBexgZr2BD4BxwHG1rpkOTADuipLKJ+n6IxpSSBER\nyU1ek4S7bzCzicBjfDME9jUzOyN87FPd/WEzO8jM3iIMgT01nzGJiEj2SuZlOhERKbyiWU/CzG40\nsyozezXlXCcze8zMXjezR82sQ8pnF5jZm2b2mpkdGE/U2TGzHmb2pJnNN7NKM5sUnS+X8rU2s5fM\nbG5Uxsuj82VRPgjv/JjZHDObHh2XTdkAzOwdM3sl+jf8V3SuLMoYDau/O4p1vpntWUZl2zH6N5sT\n/VxlZpMatXzuXhQbsA8wCHg15dwVwHnR/s+BX0f7A4C5hOay7YC3iGpFxbgB3YBB0X474HWgf7mU\nL4q5bfSzOfAiMLzMync2cBswvZz+20wp3yKgU61zZVFG4Gbg1Gi/BdChXMpWq5zNCC8t92zM8sVe\nsFqF7F0rSSwEukb73YCF0f75wM9TrnsE2DPu+DehnA8A3yvH8gFtgX9F/zGWRfmAHsDjQCIlSZRF\n2VLiXAx0rnWu5MsItAfeTnO+5MuWpkwHAs82dvmKprkpg609Gunk7suBraPzmV7AK3pmth2hxvQi\n4R+xLMoXNcfMBZYDSXdfQPmU74/AfwGpHXjlUrYaDjxuZrPM7PToXDmUsQ+wwsxuippkpppZW8qj\nbLUdC9we7Tda+Yo9SdRW0r3sZtYOuAc4y90/59vlKdnyuXu1u+9O+Kt7XzNLUAblM7OxQJWHSSfr\nGoZdcmWrZbi7DwYOAiaY2b6Uwb8foVllMHBNVL4vCH9Nl0PZvmZmLYFDgbujU41WvmJPElVm1hXA\nzLoBH0bnlxHa3Wr0iM4VLTNrQUgQt7r7g9HpsilfDXf/FHgY+C7lUb7hwKFmtgi4AxhpZrcCy8ug\nbF9z9w+inx8RmkOHUh7/fu8BS9395ej4XkLSKIeypRoDzHb3FdFxo5Wv2JKEsfFfa9OBU6L9k4EH\nU86PM7NWZtYH2IHQDl7M/g9Y4O5Xppwri/KZ2VY1oyfMrA1wAKFzrOTL5+4Xunsvd+9LeBn0SXc/\nCXiIEi9bDTNrG9VyMbPNCW3blZTHv18VsNTMdoxOjQLmUwZlq+U4wh8xNRqvfHF3tqR0oNxO6Jlf\nA7xLeKmuE/BPwmigx4COKddfQOiZfw04MO746ynbcGADUEH45TkHGA1sWSbl2y0q01zgFeBn0fmy\nKF9KzCP4puO6bMpGaLev+W+zEji/nMoIfIcw+0MFcB9hdFNZlC2Kty3wEbBFyrlGK59ephMRkYyK\nrblJRESKiJKEiIhkpCQhIiIZKUmIiEhGShIiIpKRkoSIiGSkJCEiIhkpSYiISEZKElJ0zGzLlIVU\nPjCz91KO870ue06ihW3G5/kZrczsaTPLONGgmXU1szuiRWVmmdkMM9sh+u4zdX1XJB0lCSk67r7S\n3Xf3MGvntcAfao7dfX2csdXxS7YT8JNGvmdtJwAz3N2jZJAws71rXXM/YX6pfu6+B2EKhq7uvhZ4\nBjg8lxil6VKSkGL3rV+gZnaCheVS55jZtRb0jpZjvClasvGvZnaAmc2Mjr8bfbfmutvMbIGZ/c3M\nNqvnvgvN7BYzqwR6mNn90V/plSlrL/wP0Df67hXR9ypTYj7XzH6ZEkPte37r2Wn+tziebyZqG+Du\nSaA6mlQRM9sfWOvu19d8wd0r3X1mdPhQdA+RrClJSEkxs/6ExVX2jmoa1YS/sAG2B37r7jsBOwHj\n3H04YcGgX6TcZifgancfAHwG/KSe+/aLrt/N3ZcSlsLcA9gDOMvMOhHWKHg7qu38PPpeXROj7VBz\nT2DzOp5dU+5mwC7u/kZ0aoGZjQKaufvq6NyuwOw6njkXqF3zEKlTUbbvitRhFGE9gFnRX9ubAVXA\ns8BiDyviQZgO+p/RfiVhadwa77r7i9H+bcAkwuzDQzLc9x13n5Xy/Z+aWU2zTQ9CEqnaxHIsSbln\npjKl2oqQ0ICvp8DepGe6+9qodrSZu3+1ifFKE6UkIaXGgFvc/RcbnTTrTfhFX6M65biauv9br45+\n3pzhvl+kHI8ARhLWBV5jZk8RfqnXth5onnJc+5ovUvbTlimN+vou5gNH1XNNM0p8FTYpLDU3Sal5\nAjjKzLoAmFknM+sVfVbXL9HUz3qZ2Z7R/vHAc8CTWd63A/BxlCD6A3tF5z8Dtki5rgroEt2nNXBw\nHfHUVaYaK4B2dZQPd38SaJXST4KZ7WZmw6P9VsB6d1+T6R4itSlJSElx99eAi4DHzOwVwoIq3Wo+\nTr209ldT9l8nrOO8AOgIXLsJ9/0H0NLM5gOXAy9Eca0EnjezV83simgU1qWExW4eJSzwkjaeep5d\nc001MM++WWEtk/8ADjCzt6JO8cuB5dFnu9fEK5ItLTokTUrUfDQj6jAuKWZ2MtDN3a/I8fuXAS+7\n+/2NG5mUM9UkpCkq1b+M7gAOyuWFuKipaR/ggUaPSsqaahIiIpKRahIiIpKRkoSIiGSkJCEiIhkp\nSYiISEZKEiIikpGShIiIZKQkISIiGSlJiIhIRv8PQPjrvxjUQ/MAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data=np.loadtxt('curie_example.dat').transpose()\n", "plt.plot(data[0],data[1])\n", "plt.xlabel(r'Temperature ($^{\\circ}$C)')\n", "plt.ylabel('Magnetization (arbitrary units)')\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now go to the command line in the same directory and try curie.py with the syntax curie.py -f curie\\_example.dat to see how the second derivative method works. You will see that the Curie Temperature is $\\sim$ 550$^{\\circ}$C." ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }